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The Landau-Lifschitz fluctuating hydrodynamics formalism is applied to study 
the statistical properties of simple fluids in a finite system under nonequilibrium 
constraints. The boundary conditions are explicitly taken into account so that 
the results can be compared with particle simulations. Two scenarios are 
investigated: a fluid subjected to a constant shear and a fluid subjected to a 
constant temperature gradient. By considering a fluid with vanishing thermal 
expansivity, exact results are obtained for the static and dynamic correlation 
functions. 

KEY WORDS:  Fluctuating hydrodynamics; nonequilibrium systems; corre- 
lation functions; nonequilJbrium fluctuations. 

1. I N T R O D U C T I O N  

The statistical properties of physicochemical systems are known to change 
significantly when maintained out of equilibrium through appropriate 
external constraints, mainly because in a general nonequilibrium situation 
these constraints can keep the system in a state that would be highly 
improbable at equilibrium. (1) For this reason, a purely microscopic 
approach to the study of nonequilibrium systems proves to be far more 
difficult than at equilibrium. Model systems, based essentially on the theory 
of stochastic processes, have proved helpful and one of the simplest is a 
dilute mixture of molecules undergoing chemical reactions and diffusion. 
By modeling the chemical reactions through a birth and death process and 
the diffusion by a random walk it is possible to construct a stochastic game 
which, despite its simplicity, exhibits much of the complex behavior of a 
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real reaction-diffusion system. (14) Using this theory, it is possible to under- 
stand the onset of spatial correlation from a near-equilibrium situation (5) 
up to the vicinity of a bifurcation point where the connection with 
equilibrium critical phenomena can be made. (6-1~ 

Stochastic approaches to the study of hydrodynamic systems also 
prove to be very helpful. In this respect, the most successful theory is 
undoubtedly the so-called "fluctuating hydrodynamics" of Landau and 
Lifschitz, in which spontaneous fluctuations of hydrodynamic variables are 
introduced into the transport equations by adding random components to 
the pressure and heat fluxes. (l j/ A few years ago it was realized that 
nonequilibrium modifications in the dynamical correlation function 
for hydrodynamic fluctuations were measurable in light scattering 
experiments.(~2 zs) The first such measurements were made on a liquid held 
at a fixed temperature gradient and they generated considerable 
interest j16 19) Numerous theoretical approaches have been employed by 
various authors(2~ the Landau-Lifschitz theory, extended to non- 
equilibrium systems, is often used, mostly because of its relative simplicity 
as compared with more fundamental approaches. (14"26) 

There remains, however, a paucity of experimental results, due to the 
numerous complications arising when performing small-angle scattering 
experiments. Precise line shapes are difficult to obtain. The performance of 
quantitative measurements is complicated by effects such as extraneous 
scattering, beam defocusing, etc. Another scenario that has been studied 
analytically is a fluid subject to a constant shear(~5'27); modifications to the 
scattered spectrum are as yet unobservable at rotation speeds that can be 
attained experimentally. (28) 

Considering the technological limitations of laboratory experiments, 
another promising approach is by direct computer simulation. Molecular 
dynamics (MD) has led to a number of important advances in the theory 
of fluids, from the discovery of long-time tails (29,3~ to the more recent 
observations of shear thinning (3~'32) and shear freezing. (33) Traditionally, 
most MD work has been restricted to a microscopic regime best described 
by kinetic theory or generalized hydrodynamics. For example, the 
scattering function usually measured in MD is in the range of wavenumber 
typical of neutron scattering (~1 A-~). This is well outside the 
hydrodynamic range measured by light scattering ( ~ 10 -3 ~-1)  (34) 

Thanks to the newest generation of supercomputers, a number of 
macroscopic hydrodynamic .phenomena have been recently reproduced 
(e.g., vortex formation and shedding past a flat plate (3s) and past a 
cylinder(361; convective rolls in the Rayleigh-B6nard system(37)). Such 
systems were previously considered beyond the capabilities of particle 
simulations (for a recent review see Ref. 38). Though the physical size of 
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the system remains relatively small (~102-103~) and the applied 
constraints are often very large (e.g., 10 8 K/cm(39)), the fluid is still very 
well described by the conventional hydrodynamic equations. 

The measurement of the nonequilibrium modifications to the 
correlation functions directly from MD experiments has proved to be quite 
difficult and only qualitative results have been obtained. ~4~ In this 
respect, stochastic particle simulations based on the Boltzmann 
equation (4z) have proved useful. By these simulations, ~various static 
correlations of density, velocity, and temperature have been measured (43) 
and shown to be in quantitative agreement with fluctuating hydrodynamic 
calculations. ~44) This important new influx of data from computer 
experiments is stimulating renewed interest in analytical work. 

The theoretical aspects of the problem, as relevant to computer 
experiments, present some important new features. First, the small system 
sizes and the strong gradients preclude the usual approximations developed 
for macroscopic systems (see Ref. 45 for a nice review). Second, the finite- 
size effects are of crucial importance and the boundary value problem must 
be considered with great care. Furthermore, as the system is typically 
closed, the conservation of total particle number plays an equally impor- 
tant role. 

This paper is devoted specifically to obtaining exact results for the 
static and dynamic correlation functions in closed, finite systems. To do so, 
however, we must restrict ourselves to a simple fluid model where the ther- 
mal expansion coefficient vanishes (water at 4~ and normal fluid liquid 
helium near the 2-point satisfy this condition(46)). This model has already 
been used successfully by several authors (23'47'48) in the context of light scat- 
tering experiments. One may similarly work with more complex models, in 
which case the correlation functions for a finite system may be computed 
numerically. (49) Such numerical calculations have already been presented 
for the dilute gas equations and good agreement with computer experiment 
data was demonstrated] 44) Those results are qualitatively similar to the 
results presented here, a further indication of the utility of this model. 

In the next section, we set up the fluctuating hydrodynamic equations 
in a finite geometry and discuss their general properties. Two non- 
equilibrium scenarios are subsequently studied in detail. In Section 3, we 
consider a simple fluid confined between two parallel planes moving with 
respect to each other at a given velocity. It is shown that the component of 
the velocity parallel to the moving planes obeys a closed non-Markovian 
equation which can be solved exactly; its static correlation function is 
found to be long-ranged. The dynamical correlation functions are also 
studied and interesting asymptotic behavior is found in the time correlation 
of fluctations in density and in the perpendicular velocity. In Section 4, we 
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consider the case of a system subjected to a temperature gradient. Again, 
some of the resulting equal-time spatial correlation functions are found 
to be long-ranged; they may be compared qualitatively with recent 
Monte Carlo Boltzmann simulation data. (44) Explicit expressions for the 
density-density correlation function, which is associated with the light 
scattering spectrum, are obtained in Section 5. This scattering function is 
shown to display new maxima in a finite system. These new maxima are 
found to be asymmetric when the system is held under a fixed temperature 
difference in the same manner as the Brillouin peaks. In the conclusion we 
discuss the appropriateness of the model and point out the consequences of 
our results. 

2. S I M P L E  FLUID  IN A F IN ITE  S Y S T E M  

Consider a simple fluid confined between two parallel planes located 
at y = 0 and y = L. These containing walls act as solid infinite reservoirs, so 
that by fixing their temperatures and tangential velocities, one can impose 
the desired temperature difference and strain on the system. The two boun- 
daries perpendicular to these walls are taken as periodic boundaries; note 
that this construction is typical for molecular dynamics simulations. (39) As 
mentioned in the introduction, we restrict ourselves to a model with the 
following characteristics (see also Refs. 23 and 47): 

1. The thermal expansion coefficient vanishes, 

t(?Po/~To] p0 = 0 (1) 

2. The transport coefficients are constant (i.e., independent of density 
and temperature). 

3. The state of the walls is statistically independent with respect to 
the state of the system. 

By the first assumption, the momentum equation is decoupled from the 
energy equation. The last assumption implies a simple form for the boun- 
dary conditions, which is precisely the one realized in computer 
experiments with stochastic boundary conditions. (44'49) While these 
assumptions considerably simplify the analysis, the main physical aspects 
are preserved. 

With this geometry and the above assumptions, the macrospic 
hydrodynamic equations admit a steady-state solution of the form 

To(r) = To(y) (2a) 

P0(r) = Po = const (2b) 

uo(r) = uo(y) Ix; O<.y<~L (2c) 
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where the subscript zero refers to macroscopic (i.e., nonfluctuating) 
quantities and I~ is the unit vector in the x direction (strain direction). In 
the absence of external forces (e.g., gravity), this flow is stable ~ and the 
fluctuations are small. (s~ In order to study the statistical properties of the 
system, we now linearize the fluctuating hydrodynamic equations around 
this macroscopic reference state to obtain 

C, 6p(r, t) = -V-(P0  6u + Uo 6p) (3) 

0 , 6ui(r, t) = -(Uo .V) 6u i - ( 6u .V) Uoi - ~ ~? ,. bp 

+ rl/Po V2 bui + (�89 + ~)/Po ~r 6u) - 1/po ~jSo.(r, t) (4) 

We employ the notation Cx=-c?/Cx with i, L k ,  l e { x , y , z } ;  kB is the 
Boltzmann constant, t/ and f the shear and bulk viscosity coefficients, 
respectively, and c~ is defined as 

- (1/po) [CPo/@ol ro (5) 

The fluctuating part of the stress tensor S!i is a white noise process in space 
and time; it is zero on average and its correlation function is given by (1~) 

( S~/(r, t) S~l(r', t') ) = 2kB To(y)[q(3r 3/i + 3~ b/~) 

+ ( f - ~ q ) 6 ~ i f ~ , ] b ( t - t ' ) 6 ( r - r ' )  (6) 

Since the macroscopic pressure is a constant, so are c~ and Po- In spite of 
these simplifing assumptions, finding the explicit solution of these 
equations in their general form proves to be a rather difficult task, mainly 
because of the boundary value problem. Nevertheless, the problem can be 
solved exactly if we restrict ourselves to reduced variables defined by 

1 ('L~ fOLZ 6 h ( y ) = - ~ J  ~ dx d z 6 h ( x , y , z )  (7) 

where h is any hydrodynamic variable and S = L x L ;  is the surface area of 
the walls. Note that these reduced variables are in fact the zero-wavevector 
values of the "parallel" Fourier components of the hydrodynamic variables. 
From now on we shall only treat reduced variables. With periodic boun- 
dary conditions in the x and z directions, the fluctuating hydrodynamic 
equations in reduced quantities are 

6, 6p = - P o  Cv 6v (8) 

C, 6u = -qo 6v + rl/po O~ 6u + l ip  o C? y f x( y, t) (9) 

6, a~ = - ~  a. @ + 1/po(~ + r a~ av + 1/po awL(y,  t) (lo) 

C, 6w = ~l/Po ~?~ 6w + 1/p o c?>. f ~( y, t) (11) 
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with 

(f~(y,  t) f~(y ' ,  t') ) = ( f~ (y ,  t) f~(y' ,  t') ) 

= 2kB To(y)  rl/S 6 (y  - y ' )  6(t - t') 

<.L,(Y, t) f~,(y', t') ) = 2k B To(y)(4tl + ~)/S 6 (y  - y ' )  6(t - t') 

( f ~ ( y , t ) ~ ( y ' , t ' ) > = O  for all i # j  

(12a) 

(12b) 

(12c) 

where 3u, 6v, and 6w are the x, y, and z velocity fluctuations, respectively, 
and (p(y)-  C?Uo/Oy is the shear. 

It is useful to point out some interesting properties of the reduced 
equations. First, the z component of the reduced velocity fluctuations 6w is 
decoupled from the other variables and it is not influenced by the con- 
straint. Second, the equation for the y component 6v is coupled only to the 
continuity equation. In the next sections we shall see that these properties 
greatly simply the analysis while preserving most of the typical non- 
equilibrium effects. In the conclusion, we further argue the validity of using 
these reduced variables. Moreover, in most of the nonequilibrium computer 
simulations, a space average over the parallel directions is taken (mainly to 
increase the accuracy of the statistics) so that the effective variables 
measured are precisely the reduced variables considered here. 

There remains the problem of specifying the boundary conditions for 
Eqs. (8)-(11). The boundary conditions for 6v follow from the conservation 
of total particle number, 

f f d y  c~p(y, t) = 0 (13) 

The continuity equation yields 

Po (~/)(Y)I boundaries = 0  (141 

i.e., the boundary acts as a perfectly rigid wall. The boundary conditions 
for 6u and 6w are as those of a no-slip wall: 

6 u ( y = O ) = ~ S u ( y = L ) = g ) w ( y = O ) = 6 w ( y = L ) = O  (15) 

These relations are a consequence of our third assumption that the state of 
the walls is statistically independent with respect to the state of the system. 
In fact, one can always consider an enlarged description in which the state 
of the walls is included as well. The evolution is then governed by a global 
probability density, which factorizes into system variables and wall 
variables; an average over the wall variables leaves one with a stochastic 
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process for the system variables only. A straightforward change of variables 
then leads to the relations (I4) and (15). Note that this in no way con- 
tradicts the fact that the wall variables can also be considered as fluctuating 
variables, as is usually done in computer experiments (stochastic boundary 
conditions (39, 51 ) ). 

No boundary condition for tip is required, as its evolution is entirely 
specified by the initial conditions for 6p and 6u plus the boundary 
conditions for tiu. From a physical point of view, this reflects the fact that 
the state of the wall can only constrain the temperature and velocity of the 
fluid at the wall, whereas the behavior of the density close to the wall is 
entirely determined by the internal dynamics of the system. The 
mathematical aspects of the specification of the boundary conditions are 
discussed in the Appendix. 

Given this boundary condition for tiu and the continuity equation, 
it is easy to show that the reduced fluctuations can be expanded in the 
following sine and cosine series: 

kS--~Y (16a) tip(y, t) = ~ tipk(t) cos L 
k , - 0  

2vw((~,,t ) - ~ t ivk( t )~s inkrZ (16b) 

t) , = 0  \~wk(t) /  

with the well-known inverse formula 

2 ff~ k~y. fip0(t) = 0  (16c) tipk(t) = Z dy ~p(y, t) cos  -L--- '  

~vk(t) = ~ I ~  dy 16v(y, t) sin k~YL (16d) 

tiwk(O \~w(y, t) 

In this paper, we restrict ourselves to the study of the statistical properties 
of a system in the stationary regime (i.e., we are not considering the 
transient regimes where one studies the evolution from a given initial 
condition). In this regime, a common approach is to use the Fourier 
transform in time, 

(~h(t) = de) 6h(co) e -g~)' (17a) 
- - p c )  

tih(e)) = �89 dt tih(t) e i~ (17b) 
- - o o  

where h is any hydrodynamic variable. 

822/48/5-6-14 
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Equations (8)-(11) may now easily be solved by using the above 
transforms, and the various correlation functions could be constructed in 
(k, co) space. This, however, is not their most useful representation. For 
example, in computer experiments, density fluctuations are commonly 
probed by measuring the Van Hove total correlation function,/52) 

l l ~  = i2rcqIv'r~(t) i Gq(t) = exp- - exp 
1 L a b = l  

- i2z~qlY'L rb(t = 0) )  (18) 

where r ,  and r b are the positions of particles a and b, respectively, !v is the 
unit vector in the y direction, and N is the total number of particles in the 
system. At hydrodynamic scales, this function is equivalent to the scattering 
function, defined as (see, e.g., Ref. 52) 

Sq(~o) = -  L-- 7 dy dy' exp porn L 

i 
o c  

x do)' (Sp(y, co)6p(y',o~')) (19) 

where rn is the particle mass. This scattering function can also be obtained 
in light scattering experiments from the measured spectrum. (34'53) In the 
limit of large equilibrium systems, Sq(c~) may be computed directly from 
( 6p(k, ~o) 6p(k', ~o')) by the replacement k -+ 2q, k' -~ 2q. In finite systems, 
there is no similar simple step; we must first obtain the density fluctuations 
in real space and then compute Sq(e)) according to Eq. (19) (cf. Section 5). 

Note finally that another way to proceed is to construct first the 
governing equations for the correlation functions and solve them directly. 
This method has been already discussed in Refs. 44 and 49. Its main advan- 
tage over the more traditional method discussed above comes from the fact 
that it leads directly to numerical solutions when the problem is to com- 
plicated to be handled analytically. 

At this point it is instructive to consider the effects of shear and heat 
flux separately, as the resulting phenomena are very different. Also, most 
experiments (computer and laboratory) are conducted in one of the two 
regimes: {uo:~0, OTo/•y=O} or {Uo=0, ~To/@vaO}. 

3. S I M P L E  FLUID U N D E R  A C O N S T A N T  S H E A R  

In this section we consider the case of a simple fluid under a constant 
strain. Due to viscous heating, the fluid develops a parabolic temperature 
profile whose amplitude is proportional to the square of the velocity 
gradient. If the imposed strain is not too large, the temperature variation is 
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very small and, for simplicity, we shall take the temperature as constant. 
Our evolution equations (8)-(11) do not simplify, but the noise 
correlations, Eqs. (12), are no longer space-dependent, and, as a con- 
sequence, the equations for 6p, 6v, and 6w are unaffected by the constraint. 
By the use of the transforms defined in the previous section, we 
immediately obtain the correlation functions for these variables: 

4kBpo ToF k47c4/L 4 6((,0 -}- (.o') 6kk, 
(6Pk(CO) 6Pk'(CO')) 7tV [092 _ (ckrc/L)2] 2 + 4(.021.2k4/L 4 (20)  

4kB To F co2k2~2/L 2 6(co + ~o') 6kk, 
(61)k((i)) 6Uk,((i)e)> DO TcV [602 -- (ckrc/L)2] 2 + 4092F2k47r4/L 4 (21) 

2kB To~l 6(o9 + co') 6~k,k2z2/L 2 
(6Wk(O9) 6Wk'(~'))  gVpg (////90) 2 k4rc4/L4 + r176 2 (22) 

( 6pk(~O) 6Vk.(CS') ) = -ipo(k~/coL )( 6Vk(CO) 6ve.(~o') ) (23) 

( 6p~(~o) 6w~,(~o') > = ( 6v~(~o) ~ w A c o ' ) )  = 0 (24) 

where V is the volume of the system (V= SL), F is the sound damping 
coefficient, and c is the sound speed: 

F =  (4, I + ~)/2po (25) 

C---- (~pO) 1/2 (26) 

Let us first focus on the static correlation functions. For the density 6p 
and velocities 6v and 6w, one easily finds 

(6v ( y )6v (y ' ) )=(6w(y )6w(y ' ) )=(kBTo /poS )6 (y - y ' )  (27) 

(6v(y) 6w(y') ) = 0 (28) 

( 6p(y) cSp(y') ) = (kB To/c~S)[ 6 ( y -  y ' ) -  IlL] (29) 

which are clearly the results we expect from equilibrium statistical 
mechanics. (5~ The term - 1/L in Eq. (29) ensures the conservation of the 
total mass. Because of this term, the static density autocorrelation function 
is strictly negative and its integral compensates for the local equilibrium 
(delta function) contribution. 

Now consider the equation for the x component of the reduced 
velocity, which depends on the macroscopic velocity gradient (p-= C~Uo/@ 
and may be written as 

•, 6u = ~I/Po ~2 6u + F(y, t) (30) 
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where F(y, t) is an effective noise term: 

(F(y, t))=0 (31) 

( F(y, t) F(y' ,  t') ) = 2kB To~7/(pZ S) 8y8y 6(y - y') 6 ( t -  t') 

+ ~o(y) q~(y')(av(y, t) 6v(y', t ' ) )  (32) 

This is a non-Markovian equation for 6u(y, t), since (Or(y; t )6v(y ' ,  t ' ) )  is 
not delta-correlated in time. Note that Eq. (30) can be used as a starting 
point for a more phenomenological theory; for this reason we shall first 
derive its formal solution without reference to the explicit form of q)(y) or 
(6v 6v'). Again, using the transforms defined in Section 2, one finds 

-G(o)) k~/(poL) Ok(o)) 
C~Uk(o)) = k2jz2/(poL2 ) -- io) k21z2/(poL2 ) - io) (33) 

where 0k(o)) is the Fourier transform off~,  

(Ok(o)) Ok'(o)') ) = 2kB Torl/OzV) 6k,, 6(o) + co') 

and 

(34) 

fl~(o)) - 2 /L dy sin(k~cy/L) ~p(y) 6v(y, o)) (35) 

Due to the absence of correlation between Langevin source terms, we have 

(ilk(o)) Ok'(o)')) = ( 6vk(o)) Ok'(o)')) = 0 (36) 

(fik(o))flk,(o)')) = ~ ~ ~Pk,n~Ok'n'(6V,(o))g;Vn'(o)')) (37) 
n = O  n ' = O  

(Pk,,, = 2/L dy s in(k~y/L)  sin(n~y/L) qo(y) (38) 

which completes the solution of Eq. (30). 
In our case, (p does not depend on position and the relation (38) 

becomes simply 

o~.,, = q0 fikn (39) 

Hence 

fik(r = ~o 6VK(O) ) (40) 
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This finally gives 

(aug(co) cSu,,(co') ) = 
1 ( 

(tl/po) z k4~4/L4 + co z rP2 ( avg(c~ fivk,(co') ) 

2kB Tot/ k2/r2~ 
+ r;Vp--------7oSk,k, 6(O+Co')----~ -] (41) 

The second term is just the local equilibrium contribution, while the first 
term expresses the nonequilibrium contribution. Using the explicit form of 
(6vk(co) 6vk,(co' )) [Eq. (21)], one finds after some algebra 

( au (y )  au(y ' )  ) - - -  

__ (P2 ku To 

c2poS 

kB To , 

705- a(y  - y ) 

2 cosh[(y - y '  - L)/2] - cosh[(y + y' - L)/2].~ 
2 sinh(L/2) 

(42) 

with y ~> y'  (for y < y', exchange y and y')  and 

= D ( ~  + ~,z)] 'n/(cpo) (43) 

Our 2, which has the units of length, can be associated with an acoustic 
absorption scale. The dimensionless parameter L/2 appears as the ratio of 
the inertial to the viscous effects. This parameter resembles the Reynolds 
number, except that the characteristic flow speed is taken to be the sound 
speed. 

If 2 ,~ L, the second term in the brackets in Eq. (42) is negligible and 
the nonequilibrium part of (6u 6u') reduces to a piecewise linear function 
whose amplitude is proportional to the square of the amplitude of the 
constraint (see Fig. 1). This is reminiscent of the results of Ref. 5 for the 
temperature autocorrelation function in a high-Prandtl-number liquid (see 
also Refs. 43, 44, 49, and 54) and of the results of Ref. 55 for the density 
autocorrelation function in a lattice gas. For 2 > L ,  the entire non- 
equilibrium effect vanishes. Recent stochastic particle simulation results for 
a dilute gas under shear demonstrate nice qualitative agreement with 
Eq. (42). (56) 

Let us now turn our attention to the behavior of the dynamical 
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Fig. 1. The nonequilibrium component of (~u(y) i3u(y'))~t for y' =L/4 versus y/L [see 
Eq. (42)]. The parameters are taken from the simulation described in Ref. 56 [To= 1, 
~o=1/25, L.,=L~=I, r/o=5/16p0 (rcTo) l/z, (=O,c=(5/3kB/mTo) 1/2, kB/m=l/2, m = l ,  
Po = 400], with varying values of system length. The system is under a constant shear; the 
temperature gradient is assumed to be negligible. 

cor re la t ion  functions. F o r  the z c o m p o n e n t  6w of the reduced velocity one 

easily finds 

( 6w(y, t) tSw(y', 0 ) )  = 2(kB To/Po V) ~ sin(kTzy/L ) sin(kTzy'/L ) 
k = l  

x exp( - tlk27z2t/poL 2) (44) 

which shows tha t  each spat ia l  Fou r i e r  mode  decays exponent ia l ly .  To 
s tudy this expression,  we shall assume tha t  the system size L is large 
enough so that  the series can be replaced by an integral.  In  this limit,  

(•w(y, t) 6w(y', 0)) 

= (k B To/PoS)(po/4~zrlt) ~/2 

x { e x p [ - - p o ( y  - Y')Z/4tl t] - e x p [ - P o ( Y  + Y')2/4~lt] } (45) 



Correlation Functions for Simple Fluids 1169 

which in the long-time limit behaves as 

lira ( 6w(y, t) 6w(y',  0 ) )  oc O(t -3/2) (46) 
t ~ o o  

which is a well-known result. (52) 
In contrast, the density and perpendicular velocity correlation 

functions exhibit a more interesting long-time behavior (see Section 5 for a 
full discussion of the scattering function). Consider, 

< 6v(y, t) 6v(y', o)> 

= ~ ~ sin(kzty/L)sin(k'~zy'/L) 
k = O  k ' = O  

x de) de)' e - i~  o )  6v(k', co')) (47) 
- -  o o  - -  a o  

To evaluate this function, we first set o)= iz; it follows from (21) that for 
large L we can write 

<3v(y, t) Ov(y', 0)> 

- k B T ~ 1 7 6  (48) 

with 
( 1 , ) 

I u = i i~ dz ze =' )2 + 2zFq2 + c2q2 Z2 __ 2zFq 2 + c2q2 (49) 

As t > 0, we shall close the contour to the left, so that the second term in 
(49) can be dropped, as its poles lie in the half-plane Re z > 0. We are left 
with an expression of the form 

F J(r) = dq cos rq dz zeZ'(z 2 + 2zFq 2 + c2q 2) -1 (50) 
- - o o  - - i o o  

where r = l y + _ y '  I. To evaluate J(r), we next exchange the order of 
integration to obtain 

J(r)=zc/2 f ' ~  d z ( 2 z F + c 2 ) - l / ~ e x p [ z t + r z ( 2 z F + c 2 ) - l / 2 ]  (51) 
- - l o o  

The contour can now be shifted to the left up to the branch point at 
z = -c2/2F.  Setting z = s 2 - c2/2F, one finds 

(217)1/2 ds exp ts 2 + (2F) m j (52) 
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where C moves into the origin from ( + o o ) e  ~/4 and goes out to 
(+  co)e + i~/4. For large t, the dominant contributions to this integral come 
from two saddle points lying in the vicinity of s = 0  at 
t-l/3(2F)-l/2 (rc2/2) l/~ e +-ix~3, and thus we have 

J(r ) oc t-i/2 exp( - c2 t /2[  ' -  atl/3r2/3 c 4/3 / [" (53) 

where a is a numerical constant whose precise value is not important in 
this context. Finally, for y and y' of the order of L, the contribution to (53) 
comes mainly from r = ] y -  y'[, which leads to the result 

lim (6v(y, t) 6v(y', 0))  
t ~  oo 

~: t -  1/2 exp[ - c2t/2F - at 1/3 l Y - -  y ' I  2/3 C 4 / 3 / F ]  (54) 

From our original equations (8) and (10), it is clear that the reduced 
density and perpendicular velocity fluctuations cannot be affected by the 
velocity gradient. The peculiar asymptotic behavior we find for 
(6v(y , t )  6v(y ' , t ' ) )  is not a nonequilibrium effect; it is present at 
equilibrium. 

We will not explicitly present the dynamic correlation function for the 
x component of the reduced velocity, but only remark that its asymptotic 
behavior is the same as that of 6w [Eq. (46)]. This is reasonable, since in 
the limit of vanishing velocity gradient, they obey the same equation 
[compare (22) and (41) with q0 = 0 ]  and in the limit t ~  0% the coupling 
with (6v 6v') is of negligible contribution. 

We see that for finite systems, such as those that can be realized in 
computer simulations, the decay of each mode of the correlation function 
remains essentially exponential. According to these asymptotic results, 
however, one should observe distinct time scales between the y component 
of the fluctuating velocity 6v (and the fluctuating density 6p) on the one 
hand, and the x and z components of the fluctuating velocity 6u and cSw on 
the other (see Fig. 2). 

Before closing this section, we should like to clarify an important point 
about the dynamic (reduced) density correlations in systems under shear. 
As we remark, the velocity gradient produces no modification to 
(6p(y,  t)6p(y',  t ')), yet this is a direct consequence of our setting the 
parallel Fourier component kll to zero. For nonzero kll, the continuity 
equation is coupled to the 6u equation and, as a consequence, the density 
autocorrelation function does depend on the shear. The scattering function 
[Eq. (19)] remains symmetric, but the heights of the Brillouin lines are 
modified linearly with respect to the imposed shear. This property was 
predicted by Machta eta/ . ,  ( 2 7 ' 2 8 )  but remains unobserved in laboratory 
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Fig. 2. The asymptotic forms (t--, ao) of <6w(y, t) 6w(y', 0)> and <~v(y, t) c~v(y', 0)> for 
y= v' - L/2 versus time. The parameters are taken from the simulation described in Ref. 56 
(L = 10; see caption to Fig. 1 for the other parameters). 

experiments because of technical difficulties. The computation of the finite- 
size effect for the krl r 0 case is quite tedious and will be reported elsewhere. 
A full discussion of the scattering function for reduced density fluctuations 
(kll = 0) is presented in Section 5. 

4. F INITE S Y S T E M  U N D E R  A C O N S T A N T  H E A T  FLUX 

In this section, we consider the case of a fixed temperature gradient 7, 
but with no shear (~0 =0).  Our original equations (8)-(11) simplify in that 
the equation for 6u is now decoupled from the rest, but the coefficients in 
the noise correlations [Eqs . (12)]  are space-dependent, since the 
macroscopic temperature is no longer uniform and is given by 

To(y )  = T ( y  = O) + yy (55) 

The nonequilibrium effects in this case come therefore from the 
inhomogeneous distribution of the Langevin sources. 

It is easy to check that the parallel components of the velocitY fluc- 
tuations are not affected by the constraint, so that we shall concentrate 
only on the density and perpendicular velocity fluctuations 6p and 6v. 
Using the transforms defined in Section 2, one finds 

4kBFpo6(Co+oY) k 2 k'2 
(C]pk(CO)~pk,(CO'))= zcV(c4+4f.o2F2 ) T , . , , k 2 z Z k , 2 z , Z  (56) 
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(02 
<6re((0) ark,((0') ) = <ap,((0) ape,((0') > (57) 

pg(k~/L)(k'~/L) 

i(0' 
<ap,((0) av,,((0') > = <ap,(co) ao~,((0')> (58) 

po(k'~/L) 

where the function Tk,k, is defined as 

1 r kTzy o k'Tzy 
r , , ~ , = ~ f  ~ dycos-Tc  s-z-- to(y) (59) 

and we have set 
2' 2 - -  ( 0 2 L 2 ( c 2  q- 2i(0F) 

7Z2(C 4 + 4 ( 0 2 / ' 2 )  
(60) 

As in the previous section, we shall first study the static correlation 
functions. Integrating the relations (56)-(58)  over co and co' and separating 
the local equilibrium contributions,  one finds 

(SP(Y) 5P(Y'))st  kB_~s,y 5 ( Y -  Y') 

_ kB [To(y)  + T o ( J ) -  T~] 
c~V 

+ c2rc2 S 2 2  cos cos (61) 
k + k ' = o d d  Z~ kk' 

kBT0(y) 
< &(y)  &(y')  Sst - -  a ( y -  y') po S 

_ 16kB7 2 2  sin sin )k~, (62) 
Po ;@S k + ,, = odd 

<6p(y) 6v(y ' ) )s t  

32kB~a ( - ~ - ' ~ ) ( ~ )  (k2+k'2) k2k' (63) 
- -  cTrS  2 ~ - '  cos sin * + k'= o~d (k 2 -- k '2) elk.. 

where T . -  I/L ~ dy To(y ) is the space-averaged temperature,  

d k,, = (k2 - k'2) z + 8n2g2k2k'2(k 2 q- k '2) (64) 

and e is a dimensionless number  defined as 

e = F/eL (65) 
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The double  sums in (61)-(63)  are quite difficult to evaluate explicitly, 
except asymptot ica l ly  in the limit e ~ 0 .  Yet for small values of 
L [ e ~ O ( 1 ) ] ,  the double  sums for ( 6 p 6 p ' )  and ( 6 v 6 v ' )  are easily 
computed  numerically,  since they converge as O(k  -4)  (see Fig. 3). This is 
not the case for (6p  ~v'), which behaves as O(k 2), indicating the possible 
presence of a discontinui ty in the derivative of  the function (i.e., a "kink").  
Indeed, a detailed analysis shows that  there is a kink for y = y '  (see Fig. 4); 
we can easily deal with it by writing 

(k 2 + k  '2)k2k ' _  1 ( , 1_ , (kRzk '2!~  (66) 
( k 2 - k ' 2 )  Jk , ,  8 r c 2 e 2 \ k ( k 2 - k  2) k'Akk, J 

The summat ion  can now be per formed for the first term on the r.h.s of (66) 
and one obtains  

4kB7 
<ap(y) 6v(y ' )>st  = f ( y ,  y') rc3Sce 

( )sin k'  Akk, (67) 
k + k ' = o d d  

where 

f ( y , y ' ) = ~ - ~ - ~ y  1 -  - [ y ( 1 - y ' / L )  for y '>~y/  

1 x 10 -5 

.50 

-.50 

-1 
I , I I I 

0 �9 ZOO ./+00 .600 .800 

Y'/L 
Fig. 3. The nonequilibrium component of (6v(y)6v(y'))~t for y=L/2 versus y'/L. The 
parameters are taken from the simulation described in Ref. 44 [To(y=0)= 1, L~= L:= 1, 
rlo = 5/16po(rcTo) ~/2, ~ = O, c = (5/3kB/mTo) m, kB/m = 1/2, Po = 400], with varying values of L. 
The system is under a constant temperature gradient, ? = 1/25. 
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L= 1000 
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Y'/L 
Fig. 4. The function (6p(y) gw(y'))st for y = L/2 versus y'/L. The parameters are taken from 
the simulation described in Ref. 44 (see caption to Fig. 3) with varying values of L. The system 
is under a constant temperature gradient, 7 = 1/25. 

The double sum in (67) converges as O(k 5), while the function f ly,  y') 
contains the "kink." 

Let us now consider the asympto t ic  behavior  of the static correlat ion 
functions in the limit ~--, 0. In contras t  to the previous section, the sums 
cannot  be t ransformed to intergals in a s t ra ightforward manner ,  since there 
are restrictions on the s u m m a t i o n  indices. Fo r  the sake of simplicity, we 
will restrict ourselves to the s tudy of the correlat ions of  the var ious quan-  
tities with respect to the center of the system. More  precisely, we set 
system. More  precisely, we set 

y'/L= 1/2, y/L= 1/2 + r, -1/2<~r~ 1/2 (69) 

Consider  now, for example,  the velocity au tocorre la t ion  function, as given 
by Eq. (62). Using (69), one finds 

gv~(r)=-16v(Y=L+Lr)f~v(y'=L~\2J/st-kr~T~ 

16kB 7 
-rC2poS,Z (-1)k/2ksin(krcr) ~ ( - 1 )  (*'-~/2 k '  (70) 

e v e n  k '  o d d  Z~ kk' 

The sum over  k '  can now be easily per formed by con tour  integrat ion to 
yield 

sin k~rr 
kB? 2 ( - -  1)k/2 k2( rc2e2k2- 1)1/2 gw(r) -- 2n2po S~ ~ . . . .  

x (71) 
cos r + z/2 cos ~_ zt/2 
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where 
1 

~2  = 1 "+" 87/282k 2 [1 --4~2~:2 ___ 4;,zgk(rc2g2k2 - 1 )1/2] (72) 

Expanding the various terms in powers of s, one finds, to dominant order 
in s, 

~ 4~kB ~ k sin(2k~r) sinh(4~z2k2e) (73) 
gv~(r) .~ P~ S k = 1 c~ 

Noticing that the summation index k can be rescaled by .,/7, we can now 
take the limit s ~ 0 to find 

- 4~kB7 ~ sinh(47r 2s 2) 
g~.(rs ~/2)=__ g~(R)~ PoS 2o ds sin(2~zsR) cosh2(4rc2s2 ) (74) 

An integration by parts leads to our final result, 

g w ( R ) , . ~  R fo ~ ds C~ 1/2 (75) 
P0 cosh(s2-------~, R = re 

Following the same line of calculation, we find for the static density 
autocorrelation function 

go,(r'--- (,' =--i kB To(y) 
c~V 

- -  a(r)  

c~ 1,6t 
~V cosh(s 2) 

The first term in the rhs of (76) ensures the conservation of the total mass, 
while the second term is proportional to g~,v(R). 

Since Irj~<l/2, R becomes infinity large in the limit e--+0, unless 
Irl ~ O(x/e). Using the series representation 

1 ~ ( - 1 )  k + l  ( k -  1/2) 
2~ (77) 

k = l  

it is easy to check that, in the limit R--* oe, we have 

- ~  Rexp sin k--y-+~)  gw(R)~2 \/-~ po S 

+ O ( e x p -  R-2-~- ) (78) 
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In other words, for any given value of r, the nonequilibrium contribution 
to the static velocity and density autocorrelation function behaves as 
O [ e x p ( -  1/~/-~)] and therefore vanishes exponentially with the system size. 
On the other hand, for fixed L, the above correlation functions are 
significantly different from zero only for [rl ~O(x /~) .  Their correlation 
lengths are therefore of the order of the square root of the system size x/-L. 

These asymptotic results are nicely supported by the numerical 
evaluations of the corresponding series [see Eq. (62) and Fig. 3]. Although 
the correlation length is large, the entire function vanishes in the limit of 
infinite systems. This is an important result, since it proves that in the 
presence of a temperature gradient, the existence of the above oscillatory, 
long-ranged correlation functions are entirely due to the boundary effects. 

This, however, is not the case for the density-velocity (or density- 
current) static correlation function. In fact, proceeding as before, one finds, 
to dominant order in e, 

1 - 2 cs,fiJo ds c~ cos (s2)) (79) 

The exact asymptotic analysis of the integral in (79) is quite complicated 
and we were not able to express the result in a closed form. Nevertheless, a 
qualitative analysis can be made using the following arguments: the kernel 
s - Z [ 1 -  1/cosh(s2)] behaves as (1 + s2/12)/2 in the limit s--* 0 and as 1/s 2 
in the limit s ~ oo. Therefore, for any fixed value of r r 0, the integral in 
(79) is qualitatively comparable to 

f o  1 + s  z 
12 ds cos (RS) 24 + s 4 

which behaves essentially as g~v(R), Eq. (78). Soagain,  the function gov(R) 
is significantly different from zero for lrl ~ O(xfle). But now, because of the 
presence of the 1/x/-e factor in front of the integral, gov(r) grows as ~ in 
the limit L---, oo. For instance, in the case r = 0, one easily finds 

k,7 ~ fo~ sink(s2) k,y ( L ~ 1/2 
g~ ~ ~Sc ds coshZ(s2 ) ~ -0.49 ~ \~--~j (80) 

The nonequilibrium contribution to the density-velocity correlation 
function has therefore an intrinsic origin, independent of the boundaries. In 
small systems, such as those realized in computer experiments, the boun- 
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dary effects can be as important as the intrinsic effect and therefore the full 
problem must be considered. 

The behavior of the above static correlation functions clearly suggests 
the existence of stationary sound waves generated by density fluctuations. 
To check this hypothesis, we have to compute the dynamical correlation 
functions as well. The explicit time-dependent problem, in the presence of a 
temperature gradient, proves however to be quite difficult to handle. 
Nevertheless, the scattering function can still be computed exactly (4s) 
and in the next section we examine its equilibrium and nonequilibrium 
properties in finite systems. 

5. SCATTERING FUNCTION 

In this section we consider in detail the dynamic correlation function 
for density fluctuations. Concentrating on the scattering function, as 
defined by Eq. (19), we obtain its explicit form, including nonequilibrium 
and finite-size effects. This scattering function is equivalent, in the 
hydrodynamic limit, to the Van Hove total correlation function [Eq. (18)3. 
Though most of the analysis is general, our aim is to obtain the scattering 
function for the range of parameters appropriate to computer experiments. 

Consider the density autocorrelation function in (k, co) space as given 
by Eq. (56). Taking the inverse Fourier transform and using the definition 
of Tkk, [Eq. (59)], one finds 

with 

(6p(y, co) 6p(y', m')) 

4kBFpo O(co+m') 2 ('~ 
I[V(c 4 + 4cogF 2) L J0 d~ r0(*)2(y, ,)~*(y', ~) (81) 

2 ( y , ~ ) =  cos cos k2 z 2 
k~O 

- -  cos fez 1 
=-~ 6 ( y -  ~) 4 sin rrz L 

§ (82) 

where z is defined by Eq. (60). From (81), the scattering function can now 
easily be computed, and after some tedious algebra, one finds 
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G ( ~ )  : 
32kBT ~ Fq 2 

7tmc 4 ( o ) 2 L 2 / n 2 c 2  - 4q2)  2 q- 6 4 q 4 ( 0 2 F 2 / c  4 

x Re 
I 4q 2 rcz 

q2 q 7r(4q 2 _ Z2) Z tan ~- 

IZI 2 {sin[rc(z_-z*)/2] sin [~(z +_~z*)/2] ~ 

q 4~z lco~z/2)]  2 \ z - z *  z + z *  ] 

~/L iz2 { 1 
+cq z2) + 

k rcz(4q 2 _ z2 ) tan (83) 

where T, is the (space) averaged temperature. We plot the exact solution 
(83) in Fig. 5 for thermodynamic equilibrium (i.e., ? =0)  and in Fig. 6 a 
nonequilibrium case (in each case q =  1). Besides the usual Brillouin 
lines ~53~ (located at o)~ _+0.15), one also sees two sharp peaks at lower 
frequency. For this model, we have no Rayleigh line (central peak), 
because setting the thermal expansion coefficient to zero implies that the 
specific heats at constant pressure and volume are equal. 

Let us now consider our exact expression (83) in the limit of small q 
(e.g., 1 or 2) and assume that L is large enough so that we may restrict our 

12 

g 

10 

�9 ~ =  ": " . . . . . .  0 
APPROX 

I I I 

-0.3 -0.2 -0,1 0 0.1 0.2 0.3 
CO 

Fig. 5. The scattering function Sq(oJ) as a function of frequency for q =  1 and 7 = 0  
(equilibrium). The parameters are taken from the simulation described in Ref. 44 (see caption 
to Fig. 3), with the exception that we take F =  7r/o/(6po). 
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Fig. 6. 
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The scattering function Sq(eO) as a function of frequency for q = 1 and temperature 
gradient y = 1/25. See caption to Fig. 5 for more details. 

analysis to values of co of the order of c/L. Note that this is not the 
appropriate regime for the study of macroscopic systems, such as those 
studied in light scattering experiments. (48) In computer experiments, 
however, the wavelength (L/q) on which the dynamic correlations are 
measured will have to be of the order of the system size if one wishes to 
remain in the hydrodynamic regime. Moreover, in a dilute gas simulation, 
the statistical error in the data constrains one to consider only the zero 
wavenumber in the parallel direction (i.e., reduced variables). The limit we 
are considering is thus appropriate for comparison with particle 
simulations. With this understanding, after some algebra one finds 

k~po T.ZT ~ 16q4F/c 2 
Sq(o3) rcm [_ (02L2/rc2c 2 - 4q2) 2 + 64q4o)2F2/c 4 

32 y qSrc3 coF3/c4(__~ZL2/TrZc2 + 4q 2) ) 

x 1 3 T~, L (c02L2/rc2c2 - 4q2) 2 + 64q4co2F2/c4] 

( 4q ))2 L2(.02F 

+ crc(O-~ 4q 2 2C2(1 + cos Laffc) + L20)4['2/c 4 

{ 87qcoVL O~ + 4q 2 ) ]  
x \1  ~c2T " (~-2kZ~q2)2jj (84) 

8 2 2 / 4 8 / 5 - 6 - 1 5  
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where 

and 

O k = 2 k - - 1  for 4(k-1)2<~L2o~2/~2c2<4k2;  k = l , 2  .... (85) 

xT = (epo/OPo)To/po ~- 1/(~p~) 

is the isothermal compressibility. The first term yields the Brillouin lines; its 
maxima are at o~L/e = +_2zq. The second term reflects the finite-size effect 
and is responsible for the extra peaks, which occur for c~L/c = +_~, +_ 3~z,.... 
Each of these terms is composed of two parts, an equilibrium part and a 
nonequilibrium part which is proportional to the temperature gradient 7. 
The absence of terms nonlinear in the gradient is a result of our first two 
assumptions (see Section2). In Figs. 5 and 6, we see that the 
approximation is already quite good, at least near the peaks, for the 
parameters of the computer simulation described in Ref. 44 (L/c ~ 50 mean 
free times). The comparison with recent computer simulation data also 
shows nice qualitative agreement with these results. Specifically, the extra 
peaks are observed and they are found to be asymmetric out of 
equilibrium, t57) 

The nonequilibrium terms are seen to be odd in frequency, yielding the 
asymmetry seen in Fig. 6. The part corresponding to the Brillouin lines is a 
double Lorentzian, in agreement with previous calculations where the 
boundary effects are neglectedJ 45) Its coefficient, however, is different as a 
direct result of the dominant role of the boundaries. To see this, let us 
consider in more detail the origin of the asymmetry in the spectrum. Satten 
and Ronis (48) found a modulation of the Brillouin lines because of the 
boundary effect and a smaller asymmetry than that obtained in 
calculations where the boundary effects were neglected. In our case, the 
finite-size peaks do not overlap with the Brillouin lines, but are well 
separated. Yet a detailed analysis of the various terms in the exact 
expression (83) shows that the asymmetry arises mainly from the finite-size 
effect (see Ref. 58 for the full discussion of this result). It is clear that for 
macroscopic systems, such as laboratory systems used in light scattering 
experiments, the interplay between bulk and boundary effects will be 
different. Though nonlinear effects are not considered in our analysis, (2~ 
for computer experiments, due to the small system size and the presence of 
stochastic boundaries, the finite-size effect seems to dominate over non- 
linear effects even though the imposed nonequilibrium constraints are 
extremely large. Note that in a recent work dealing with macroscopic 
systems, Schmitz and Cohen arrive essentially at the same conclusion. (6~ 

Consider now the finite-size peaks; an obvious explanation for the 
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extra lines at odd values of ~oL/rcc is the existence of stationary sound 
waves .across the system, as originally suggested in Refs. 61 and 62 for 
equilibrium systems and later remarked in Ref. 48 for nonequilibrium 
systems. The density fluctuations are converted to sound waves, which are 
reflected by the rigid walls, giving rise to stationary waves. For this picture 
to be consistent, however, we have to check two consequences. First, for a 
system with periodic boundary conditions in the y directions, the extra 
peaks must disappear, since for the stationary waves to be formed, one 
needs coherent sound waves crossing. It is easy to check theoretically that 
this is indeed so. It is also known from equilibrium computer simulation 
measurements that there are no such peaks (some other effects can, 
however, be observed if the time correlation functions are considered for 
lag times greater than the sound crossing time in the system(34'63)). 

Next, the perpendicular-current static correlation function must 
obviously contain this effect. At equilibrium this function is delta- 
correlated. The random distribution of the phases of the Langevin sources 
ensures time-reversal symmetry and thus eliminates any observable effect in 
this function. In nonequilibrium systems, however, the average amplitudes 
of the Langevin sources are not equal and the standing waves produce an 
observable effect. Recall the (perpendicular) velocity-velocity static 
correlation function, given by Eq. (62) and represented in Fig. 3. Its form 
clearly suggests the existence of spatially damped standing waves across the 
system. As demonstrated in the previous section, in the limit of large L, the 
nonequilibrium contribution to (3v(y) 6v(y'))st and (3p(y)  3p(y'))st  goes 
to zero as L--, oo. This, however, was not the case for the density-current 
static correlation function, since it arises from the broken time-reversal 
symmetry and is responsible for the asymmetry in the Brillouin lines, even 
in an infinite medium. (45) These properties of the static correlation function 
and the presence of extra peaks in Sq(CO) definitely establish the presence of 
standing waves across the system generated by fluctuations. They also 
show the existence of long-range oscillatory correlation functions and the 
dominant role of the boundary effects on the statistical properties of non- 
equilibrium systems. From an experimental point of view, the effect is 
difficult to observe in light scattering measurements, as discussed in Ref. 48. 

At the end of Section 3 we mentioned that there is no nonequilibrium 
effect on the reduced density fluctuations in a system under shear. Thus, the 
equilibrium scattering function obtained in this section applies equally well 
to a system with a velocity gradient but without a temperature gradient 
(negligible viscous heating). Again we point out that there is no shear- 
induced modification to the scattering function, because our use of reduced 
variables (cf. Section 3). 
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6. C O N C L U S I O N  

In this paper we have studied the statistical properties of a simple fluid 
in finite systems and under nonequilibrium constraints. Our main goal was 
to obtain exact expressions for the static and dynamic correlation functions 
so that the results could be compared with those obtained in computer 
experiments. The mathematical analysis of the problem proves to be rather 
involved, mainly because of the boundary value problem. In- this paper we 
have emphasized finite-size effects at the expense of studying a somewhat 
simplified scenario. We had to restrict ourselves to a model fluid for which 
the thermal expansion coefficient is zero and the transport coefficients are 
constant. A further simplification is introduced by limiting o u r  analysis to 
the study of reduced variables, i.e., setting the "parallel" Fourier com- 
ponents to zero. When the exact expressions for the various correlation 
functions did not possess a clear compact form, we explored their 
asymptotic behavior, in the limit of a large system size, to extract the 
relevant physics. 

The fluid is assumed to be confined between two parallel plates acting 
as infinite reservoirs so that, by fixing their temperatures and velocities, one 
can impose the desired nonequilibrium constraints on the system. The 
boundary conditions are those realized in typical molecular dynamics 
simulations: fixed temperature and velocities at the walls and periodic 
boundary conditions in the other directions (parallel to the walls). Two 
scenarios were envisaged: a system under a constant shear and a system 
under a constant temperature difference. 

The first conclusion is that many of the correlation functions are not 
affected by either the boundaries or the nonequilibrium constraints. For 
example, when a velocity gradient is imposed, ((3p(y)(~p(y'))st , 
(6p(y) 6v(y'))~t, and (6v(y)6v(y'))~t are unaffected by the shear, while 
(6u(y, t) 6u(y', t') ) and (6w(y, t) 6w(y', t') ) retain their equilibrium form 
in spite of the presence of a temperature gradient. In some cases, the 
absence of an effect is a direct consequence of the simplicity of our model 
fluid or the use of reduced variables. Yet it is interesting to note that, while 
the correlation functions for some reduced variables change dramatically 
out of equilibrium, others remain entirely unaffected. 

Second, the static correlation functions that are affected by the non- 
equilibrium constraints are all long-ranged. Some correlations [e.g., 
(C]U(.F) c]u(y'))st for shear and (6p(y)~v(y'))st  for temperature gradient] 
extend over the entire system and persist even in the limit of large system 
size L (see Figs. 1 and 4). They therefore have an intrinsic origin in the 
sense that the finite-size effects give rise only to a quantitative correction, 
which becomes vanishingly small as the system size becomes large. Others, 



Correlation Functions for Simple Fluids 1183 

such as (g)v(y)hv(y'))st and (6p(y)Fp(y'))st in a system with a tem- 
perature gradient, have a characteristic range of the order of xflL, but their 
amplitude, although proportional to the temperature gradient, eventually 
vanishes in the limit L--, oo (gradient fixed). They therefore have an 
extrinsic origin in the sense that the nonequilibrium modifications exist 
only because of the boundary effects; in the limit of infinitely large systems, 
these correlation functions take their equilibrium form. Our asymptotic 
analysis shows that the dimensionless quantity 

kinematic viscosity 

sound speed - system length 

plays an important role in delineating the characteristic regimes (Sec- 
tion 4). As we have shown, to dominant order in e, the various correlation 
functions are naturally scaled by e 1/2 i.e., 

{ 6a(y) 6D(.v') 5st =,f[~-1/2(y __ y , ) /Z  ] (86) 

where a and b represent the density or the velocity fluctuations. This the 
parameter that controls the effective correlation lengths of fluctuating 
variables. Its inverse, e-~, resembles the Reynolds number except that the 
characteristic velocity is now replaced by the sound velocity. Note, finally, 
that the long-range coherence of fluctuations emphasizes the necessity of 
carefully dealing with the boundary conditions even for large systems. 

Third, given the interesting modifications observed in the static 
correlation functions, it is not surprising to find these effects reflected in the 
dynamic correlation functions. It is well known that the Brillouin lines in 
the scattering function become asymmetric when the fluid is subjected to a 
temperature gradient. ~45) In equilibrium systems, because of time-reversal 
symmetry, the static density-current correlation function is zero. In the 
presence of a temperature gradient, however, the time-reversal symmetry is 
broken; (6p(y)6v(y'))st is no longer zero (Section4) and, as a con- 
sequence, the Brillouin lines are asymmetric. In Section 5, we demonstrated 
a finite-size effect in the scattering function, the appearance of extra peaks 
in the spectrum. These extra peaks indicate the existence of standing sound 
waves generated by the fluctuations. Interestingly, they are also asymmetric 
out of equilibrium in the same manner as the Brillouin lines. We believe 
this effect to be a reflection of the nonequilibrium modifications of the 
static correlation functions (6p(y) 6p(y') )st and (~v(y) 6v(y') )~t. 

As we already emphasized, our main goal in this article was to com- 
pare our results with those obtained from particle simulations. Molecular 
dynamics methods are too slow and thus far have only yielded qualitative 
results. (4~ Computational model fluids, such as cellular automata, have 
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proven to be useful in describing macroscopic hydrodynamic flows, mainly 
due to their high computational speed/64~ Unfortunately, the problem of 
defining a thermodynamic temperature precluded the study of hydro- 
dynamic fluctuations (see, however, Ref. 65). 

Recently, we have employed stochastic particle simulations 142) (based 
on the Boltzmann equation) to measure nonequilibrium correlation 
functions in a dilute gas. (43'44'56) It is surprising to note that in spite of the 
strong assumptions made in our fluid model, as compared with dilute gas 
hydrodynamics, all of our results agree, at least qualitatively, with the 
available data. This is true for both the shear and temperature gradient 
cases. Very recently, the finite-size peaks have also been observed in such 
simulations(57/; the results are again in qualitative agreement with our 
analysis. 

Finally, it should be pointed out that our model fluid suffers from two 
handicaps. First, setting the thermal expansion coefficient to zero precludes 
a study of the Rayleigh line. Second, we have only treated the reduced 
variables throughout this paper. While thise limitations are perhaps regret- 
table, our results mark a necessary step toward the more complete theory 
that we are currently developing. 

A P P E N D I X :  M A T H E M A T I C A L  P R O P E R T I E S  OF T H E  
S O L U T I O N S  

In this Appendix, we demonstrate that the initial conditions 
{6p(y, t=0) ,  6u(y, t=0)} and the boundary conditions for cSu 

6u(y = 0, t )=~u(y=L,  t ) = 0  (A1) 

are sufficient to specify the solution of Eqs. (8)-(11). In particular, we show 
that a boundary condition for the density cannot be specified. To do so, it 
is sufficient to consider the homogeneous (i.e., no source terms) equations 
for 6p and 6v, 

#6p/at = -Po a6v/Sy (A2) 

acsv/at = -c~ &SO/@ + ~l/Po aZav/Sy 2 (A3) 

The solutions for cSu and 6w follow directly given dr, since the former are 
not coupled to #p. 

What we have to prove is that the uniqueness of the solution does not 
require the specification of a boundary condition for #p, i.e., the system 
itself determines the particular value of 6p at the boundaries. To this end, 
let us consider the auxiliary function 

A(t) = dy [ct(cSp)2+po(~V) 2] >~0 (A4) 
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This function may  be associated with the total acoustic energy in the 
system. It follows from direct calculation that  if {6p(y ,  t), 6u(y,  t)} is a 
solution of  (A2)- (A3)  that  satisfies the boundary  condit ion (A1), then 
~A/~t <~ 0 (recall that  c~, Po, and r /a re  positive). 

Consider  now the quiescent initial condit ion {cSp(y , t=O)=O,  
c~u(y, t = 0), = 0}. Clearly, A( t  = 0 ) =  0, so, f rom our  result, A ( t ) =  0 for all 
t. F r o m  the definition (A4), this implies that  the only solution is 
{~p(y,  t ) =  0, ~u(y, t ) =  0} for all t. Our  p roof  of  uniqueness is now stan- 
dard. Assume that  there exist two solutions {6pl ,  6ul} and {6p 2, 6u2}, 
which satisfy the same arbi trary initial condit ion and the boundary  
condit ion (A1). The difference {~pl-~ip2=c~CS, f i u~ -~Uz=~f i}  must  
also be a solution satisfing the boundary  condit ion and  the initial 
condit ion {6~(y, t : 0 ) = 0 ,  fifi(y, t = 0 ) = 0 } .  F r o m  our  previous result, 
{6p~ - 6P2 = 0, 6u~ - ~u2 = 0}, complet ing the proof  of uniqueness. 
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