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Abstract

A novel Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm is developed for the simulation of polymer
chains suspended in a solvent. SEDMD combines event-driven molecular dynamics (EDMD) with the Direct Simulation
Monte Carlo (DSMC) method. The polymers are represented as chains of hard-spheres tethered by square wells and inter-
act with the solvent particles with hard-core potentials. The algorithm uses EDMD for the simulation of the polymer chain
and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent
particles themselves are not treated deterministically as in EDMD, rather, the momentum and energy exchange in the sol-
vent is determined stochastically using DSMC. The coupling between the solvent and the solute is consistently represented
at the particle level retaining hydrodynamic interactions and thermodynamic fluctuations. However, unlike full MD sim-
ulations of both the solvent and the solute, in SEDMD the spatial structure of the solvent is ignored. The SEDMD algo-
rithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard-wall subjected to
uniform shear. SEDMD closely reproduces results obtained using traditional EDMD simulations with two orders of mag-
nitude greater efficiency. Results question the existence of periodic (cycling) motion of the polymer chain.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Driven by nanoscience interests, it has become necessary to develop tools for hydrodynamic calculations at
the atomistic scale [1–5]. Of particular interest is the modeling of polymers in a flowing ‘‘good” solvent for
both biological (e.g. cell membranes) and engineering (e.g. micro-channel DNA arrays) applications [4,6].
The most widely studied polymer models are simple linear bead-spring; freely-jointed rods; or worm-like
chains. Such models have been parameterized for important biological and synthetic polymers. Much
theoretical, computational, and experimental knowledge about the behavior of these models has been
accumulated for various representations of the solvent. However, the multi-scale nature of the problem for
both time and length is still a challenge for simulations of reasonably large systems over reasonably long times.
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Furthermore, the omission in these models of the explicit coupling between the solvent and the polymer
chain(s) requires the introduction of adjustable parameters (e.g. friction coefficients) to be determined empir-
ically. The algorithm presented here overcomes this deficiency for a linear polymer chain tethered to a hard
wall and subjected to a simple linear shear flow [7–11]. Of particular interest is the long-time dynamics of
the polymer chain [7,9,10,12,13] and any effects of the polymer motion on the flow field.

Brownian dynamics is one of the standard methods for coupling the polymer chains to the solvent [14,15].
The solvent is only implicitly represented by a coupling between the polymer beads and the solvent in the form
of stochastic (white-noise) forcing and linear frictional damping. The flow in the solvent is not explicitly sim-
ulated, but approximated as a small perturbation based on the Oseen tensor. This approximation is only accu-
rate at large separations of the beads and at sufficiently small Reynold’s numbers. Even algorithms that do
model the solvent explicitly via Lattice–Boltzmann (LB) [16], incompressible (low Reynolds number) CFD
solvers [17–19], or multi-particle collision dynamics [20–23], typically involve phenomenological coupling
between the polymer chain and the flowing fluid in the form of a linear friction term based on an effective vis-
cosity. Furthermore, solvent fluctuations in the force on the polymer beads are often approximated without
fully accounting for spatial and temporal correlations. Finally, the reverse coupling of the effect of the bead
motion on the fluid flow is either neglected or approximated with delta function forcing terms in the contin-
uum fluid solver [24]. More fundamentally, continuum descriptions of flow at micro and nanoscales are known
to have important deficiencies [1,3] and therefore it is important to develop an all particle algorithm that is
able to reach the long times necessary for quantitative evaluation of approximate, but faster, algorithms.

The most detailed (and expensive) modeling of polymers in flow is explicit molecular dynamics (MD) sim-
ulation of both the polymer (solute) and the surrounding solvent [11,25]. Multi-scale algorithms have been
developed to couple the MD simulation to Navier–Stokes-based computational fluid dynamics (CFD) calcu-
lations of the flow field [8]. However, the calculation time still remains limited by the slow molecular dynamics
component. Thus the computational effort is wasted on simulating the structure and dynamics of the solvent
particles, even though real interest lies in the polymer structure and dynamics, and their coupling to the fluid
flow. Our algorithm replaces the deterministic treatment of the solvent-solvent interactions with a stochastic
momentum exchange operation, thus significantly lowering the computational cost of the algorithm, while
preserving microscopic details in the solvent-solute coupling.

Fluctuations drive the polymer motion and must be accurately represented in any model. Considerable
effort has been invested in recent years in including fluctuations directly into the Navier–Stokes (NS) equations
and the associated CFD solvers [5,17,26]. Such fluctuating hydrodynamics has been coupled to molecular
dynamics simulations of polymer chains [19], but with empirical coupling between the beads and the fluid
as discussed above. To avoid the empirical coupling, the solvent region could be enlarged by embedding
the atomistic simulations of the region around the polymer chain in a fluctuating hydrodynamics region.
The bidirectional coupling between the continuum and particle regions has to be constructed with great care
so that both fluxes and fluctuations are preserved [27]. A well-known problem with such multi-scale
approaches is that the finest scale (atomistic simulation) can take up the majority of computational time
and thus slow down the whole simulation. By using DSMC the cost of the particle region can be made com-
parable to that of the continuum component.

The Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm presented here combines event-
driven molecular dynamics (EDMD) for the polymer particles with Direct Simulation Monte Carlo (DSMC)
for the solvent particles. Note that our algorithm is similar to a recent algorithm developed for soft interaction
potentials combining time-driven MD with multi-particle collision dynamics [23]. In SEDMD, the polymers
are represented as chains of hard-spheres tethered by square wells. The solvent particles are realistically smal-
ler than the beads and are considered as hard spheres that interact with the polymer beads with the usual hard-
core repulsion. The algorithm processes true (deterministic, exact) binary collisions between the solvent par-
ticles and the beads, without any approximate coupling or stochastic forcing. However, the solvent particles
themselves do not directly interact with each other, that is, they can freely pass through each other as for an
ideal gas. Deterministic collisions between the solvent particles are replaced with momentum- and energy-con-
serving stochastic DSMC collisions between nearby solvent particles. This gives realistic hydrodynamic behav-
ior of the solvent similar to that of a true hard-sphere liquid. However, the DSMC fluid cannot directly be
compared to an EDMD fluid because the two fluids are different. Notably, the internal structure and the asso-
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ciated non-ideal equation of state (EOS) of the hard-sphere liquid is lost when using DSMC. We are currently
developing DSMC variants that produce more realistic fluid behavior, in particular, a non-trivial structure
factor and a thermodynamically-consistent EOS.

The fundamental ideas behind our algorithm are described next, and further details are given in Section 3.
Section 5 gives results from the application of the algorithm to the tethered polymer problem, and some con-
cluding remarks are given in Section 6.

2. Hybrid components

In this section we briefly describe the two components of the SEDMD algorithm: The stochastic handling
of the solvent and the deterministic handling of the solute particles. These two components are integrated (i.e.,
tightly coupled) into a single event-driven algorithm in Section 3.

2.1. Solvent DSMC model

The validity of the incompressible Navier–Stokes continuum equations for modeling microscopic flows has
been well established down to length scales of 10–100 nm [3]. However, there are several issues present in
microscopic flows that are difficult to account for in models relying on a purely PDE approximation. Firstly,
it is not a priori obvious how to treat boundaries and interfaces well, so as account for the non-trivial (possibly
non-linear) coupling between the flow and the microgeometry. Furthermore, fluctuations are not typically
considered in Navier–Stokes solvers, and they can be very important at instabilities [28] or in driving polymer
dynamics. Finally, since the grid cell sizes needed to resolve complex microscopic flows are small, a large com-
putational effort (comparable to DSMC) is needed even for continuum solvers. An alternative is to use par-
ticle-based methods, which are explicit and unconditionally stable and rather simple to implement. The solvent
particles are directly coupled to the microgeometry, for example, they directly interact with the beads of a
polymer. Fluctuations occur naturally with the correct spatio-temporal correlations.

Several particle methods have been described in the literature, such as MD [25], dissipative particle dynam-
ics (DPD) [29], and multi-particle collision dynamics (MPCD) [2,23]. Our method is similar to MPCD (also
called stochastic rotation dynamics or the Malevanets-Kapral method), and in fact, both are closely related to
the Direct Simulation Monte Carlo (DSMC) algorithm of Bird [30]. The key idea behind DSMC is to replace
deterministic interactions between the particles with stochastic momentum exchange (collisions) between
nearby particles. Time-driven (traditional) DSMC involves the following steps:

Advection Every particle i is propagated ballistically by a fixed time step Dt; ri  ri þ Dtvi.
Sorting Particles are sorted into cells, each containing a few (e.g. 2–10) particles.
Collision In each cell, a certain number N coll ¼ CcDt of random pairs of particles are chosen to undergo
energy- and momentum-conserving stochastic collisions. The collision rate Cc and the pairwise probability
distributions are chosen based on kinetic theory.

Formally, DSMC can be seen as a method for solving the Boltzmann transport equation for a low-density
gas, however, it is not limited to gas flows [31–33]. Our purpose for using DSMC is as a replacement for expen-
sive MD, preserving the essential hydrodynamic ‘‘solvent” properties: local momentum conservation, and lin-
ear momentum exchange on length scales comparable to the particle size, and a similar fluctuation spectrum.

In the multi-particle collision variant of this algorithm originally proposed by Kapral, the traditional
DSMC collection of binary collisions is replaced by a multi-particle collision in which the velocities of all par-
ticles in the cell are rotated by a random amount around the average velocity [2,23]. This change improves
efficiency but at the cost of some artificial effects such as loss of Galilean invariance. These problems can
be corrected and the method has been successfully used in modeling polymers in flow by including the beads,
considered as (massive) point particles, in the stochastic momentum exchange step [20,22,34].

It is important to note that the DSMC fluid is not a true hard-sphere liquid, as would be simulated by using
full MD. Notably, the DSMC fluid has no internal structure and has an ideal gas equation of state (EOS), and
is thus very compressible. For subsonic flows this compressibility does not qualitatively affect the results as the
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DSMC fluid will behave similarly to an incompressible liquid, however, the (Poisson) density fluctuations in
DSMC are significantly larger than those in realistic liquids. Furthermore, the speed of sound is small (com-
parable to the average speed of the particles) and thus subsonic (Mach number less than one) flows are limited
to relatively small Reynolds numbers.1 The Consistent Boltzmann Algorithm (CBA) [32,33], as well as algo-
rithms based on the Enskog equation [35,36], have demonstrated that DSMC fluids can have dense-fluid com-
pressibility. A similar algorithm was recently constructed for MPCD [37]. We are currently developing several
thermodynamically-consistent variants of DSMC that give fluids with a non-ideal EOS and will report our
findings in future work.

2.2. Polymer MD model

Polymer chains in a solvent are often modeled using continuous pair potentials and time-driven MD
(TDMD), in which particles are synchronously propagated using a time step Dt, integrating the equations
of motion along the way. Typically the polymer is assumed to be in a good solvent, that is, that the effective
interaction between polymer beads is repulsive and thus the polymer chain does not collapse to a globule but is
extended. The polymer beads are represented as spherical particles that interact with other beads and solvent
particles with short-range repulsive pair potentials, such as the positive part of the Lennard–Jones potential.
Additionally, beads are connected via finitely-extensible FENE or worm-like springs in order to mimic chain
connectivity and elasticity [25]. Finally, stochastic forces may be present to represent the solvent.

The time steps required for integration of the equations of motion in the presence of the strongly repulsive
forces is small and TDMD cannot reach long time scales even after parallelization. An alternative is to use
hard-spheres instead of soft-particles, allowing replacement of the FENE springs with square well tethers, thus
avoiding the costly force evaluations in traditional MD. Hard-sphere MD is most efficiently performed using
event-driven molecular dynamics (EDMD) [38–41]. If the detailed structure and energetics of the liquid is not
crucial, such EDMD algorithms can be just as effective as TDMD ones but considerably faster. The essential
difference between EDMD and TDMD is that EDMD is asynchronous and there is no time step, instead, col-
lisions between hard particles are explicitly predicted and processed at their exact (to numerical precision) time
of occurrence. Since particles move along simple trajectories (straight lines) between collisions, the algorithm
does not waste any time simulating motion in between events (collisions).

Hard-sphere models of polymer chains have been used in EDMD simulations for some time [40,42,43].
These models typically involve, in addition to the usual hard-core exclusion, additional square well interactions
to model chain connectivity. The original work by Alder et al. on EDMD developed the collisional rules
needed to handle arbitrary square wells [38]. Infinitely high wells can model tethers between beads, and the
tethers can be allowed to be broken by making the square wells of finite height, modeling soft short-range
attractions. Recent studies have used square well attraction to model the effect of solvent quality [41]. Even
more complex square well models have been developed for polymers with chemical structure and it has been
demonstrated that such models, despite their apparent simplicity, can successfully reproduce the complex
packing structures found in polymer aggregation [42,43]. Recent work on coupling a Kramer bead-rod poly-
mer to a Navier–Stokes solver has found that using hard rods instead of soft interactions not only rigorously
prevents rod–rod crossing, but also achieves a larger time step, comparable to the time step of the continuum
solver [21].

This study is focused on the simplest model of a polymer chain, namely, a linear chain of N b particles teth-
ered by unbreakable bonds. This is similar to the commonly-used freely-jointed bead-spring FENE model
used in time-driven MD. The length of the tethers has been chosen to be 1.1 Db, where Db is the diameter
of the beads.2 The implementation of square well potentials is based on the use of near neighbor lists (NNLs)
in EDMD, and allows for the specification of square well interactions for arbitrary pairs of near neighbors. In
1 For a low-density gas the Reynolds number is Re ¼ M=K, where M ¼ vflow=c is the Mach number, and the Knudsen number K ¼ k=L is
the ratio between the mean free path k and the typical obstacle length L. This shows that subsonic flows can only achieve high Re flows for
small Knudsen numbers, i.e., large numbers of DSMC particles.

2 Note that the hard-sphere model rigorously prevents chain crossing if the tether length is less than 2Db in two dimensions and
ffiffiffi
2
p

Db in
three dimensions.
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particular, one can specify a minimal Lmin
t P Db and maximal distance Lmax

t > Lmin
t for arbitrary pairs of near

neighbors. Here the maximal distance Lmax
t represents the tether length between neighboring beads. A value

Lmin
t > Db can be used to emulate chain rigidity (i.e., a finite persistence length) by using second nearest neigh-

bor interactions between chain beads.

3. Details of hybrid algorithm

In this section the hybrid EDMD/DSMC algorithm, which we name Stochastic EDMD (SEDMD), is
described in detail. Only a brief review of the basic features of EDMD is given and the focus is on the DSMC
component of the algorithm and the associated changes to the EDMD algorithm described in detail in Ref.
[39]. A more general description of asynchronous event-driven particle algorithms is given in Ref. [44].

Asynchronous event-driven (AED) algorithms process a sequence of events (e.g. collisions) in order of
increasing event time te. The time of occurrence of events is predicted and the event is scheduled to occur
by placing it an event queue. The simulation iteratively processes the event at the head of the event queue, pos-
sibly scheduling new events or invalidating old events. One impending event per particle i; 1 6 i 6 N , is sched-
uled to occur at time te with partner p (e.g. another particle j). The particle position ri and velocity vi are only

updated when an event involving particle i is processed and the time of last update ti is recorded. We will refer
to this procedure as a particle update.

We note that traditional synchronous time-driven (STD) algorithms with a time step Dt are a trivial variant
of the more general AED class. In particular, in an STD algorithm events occur at equispaced times and each
event is a time step requiring an update of all of the particles. Our SEDMD algorithm processes a mixture of
events involving single particles or pairs of particles with time steps that involve the simultaneous (synchro-
nous) update of a large collection of particles.

Every particle i belongs to a certain specie si. We focus on a system in which a large fraction of the particles
belong to a special specie sDSMC representing DSMC particles (e.g. solvent molecules). These DSMC particles
do not interact with each other via hard-core repulsion, but they do interact with particles of other species. We
focus on the case when the non-DSMC particles are localized in a fraction of the simulation volume, while the
rest of the volume is filled with DSMC particles. This will enable us to treat the majority of DSMC particles
sufficiently far away from non-DSMC particles more efficiently than those that may collide with non-DSMC
particles.

Before describing the SEDMD algorithm in detail, we discuss the important issue of efficiently searching for
nearby pairs of particles.

3.1. Near neighbor searches

When predicting the impending event of a given particle i, the time of potential collision between the particle
and each of its nearby neighbor particles is computed [39,44]. The DSMC algorithm also requires defining neigh-
bor particles, that is, particles that may collide stochastically during the DSMC collision step. For efficiency, geo-
metric techniques are needed to make the number of neighbors of a given particle O(1) instead of O(N).

In SEDMD we use the so-called linked list cell (LLC) method for neighbor searching in both the EDMD
and DSMC components. The simulation domain is partitioned into N cells cells as close to cubical as possible.
Each particle i stores the cell ci to which its centroid belongs, and each cell c stores a list Lc of all the particles it
contains, as well as the total number of particles N c in the cell. For a given interaction range, neighbors are
found by traversing the lists of as many neighboring cells as necessary to ensure that all particles within that
interaction range are covered. In traditional DSMC, only particles within the same cell are considered neigh-
bors and thus candidates for collision. There are also variants of DSMC in which particles in nearby cells are
included in order to achieve a non-ideal equation of state [35,36]. Such variants can be used in SEDMD with-
out any changes to the EDMD component of the algorithm.

3.1.1. Cell bitmasks

In addition to the list of particles Lc, each cell c stores a bitmask Mc consisting of N bits > N s þ 4 bits (bit-
fields). These bits may be one (set) or zero (not set) to indicate certain properties of the cell, specifically, what
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species of particles the cell contains, whether the cell is event or time driven, and to specify boundary condi-
tions. In order to distinguish the cells that contain non-DSMC particles from those that contain only DSMC
particles, bit c is set if the cell may contain a particle of specie c. The bit is set whenever a particle of specie c is
added to the cell, and all of the masks are reset and then rebuilt (refreshed) periodically. When performing a
neighbor search for a particle i, cells not containing particles of species that interact with specie si are easily
found by OR’ing the cell masks with a specie mask, and are simply skipped. This speeds up the processing of
DSMC particles since cells containing only DSMC particles will be skipped without traversing their lists of
particles.

In SEDMD we will also need to distinguish those cells that are nearby non-DSMC particles, that is, that
contain particles within the interaction range of some non-DSMC particle. Such cells will be treated using a
fully event-driven (ED) scheme, while the remaining cells will be treated using a time-driven or mixed
approach. We use one of the bits in the bitmasks, bit cED, to mark event-driven (ED) cells. Specifically, bit
cED is set for a given cell whenever the cell is traversed during a neighbor search for a non-DSMC particle.
This scheme correctly masks the cells by only modifying the neighbor search routine (iterator) without chang-
ing the rest of the algorithm, at the expense of a small overhead. We also mark the cells near hard-wall bound-
aries as ED cells. Cell bitmasks should be cleared and rebuilt periodically so as to prevent the fraction of ED
cells from increasing. As will be seen shortly, it is necessary to introduce at least one ‘‘sticky” bit cst that has
memory and is not cleared when cell bitmasks are refreshed. This bit will mark unfilled cells, as explained in
Section 3.3.

3.1.2. Near neighbor lists

The cell size should be tailored to the DSMC portion of the algorithm and can become much smaller than
the size of some of the non-DSMC particles. The LLC method becomes inefficient when the interaction range
becomes significantly larger than the cell size because many cells need to be traversed. In this case the LLC
method can be augmented with the near neighbor list (NNL) method, and in particular, the bounding sphere
complexes (BSCs) method, as described in detail for nonspherical hard particles in Ref. [39]. We have imple-
mented the necessary changes to the algorithm to allow the use of NNLs and BSCs (in addition to LLCs), and
we used NNLs in our simulations of polymer chains in solution. The use of BSCs is not necessary for efficient
simulations of polymer solutions if the size of the polymer bead is comparable to the size of the cells, which is
the case for the simulations we report. We do not describe the changes to the algorithm in detail; rather, we
only briefly mention the essential modifications.

For the purposes of DSMC it is important to maintain accurate particle lists Lc for all cells c, so that it is
known which particles are in the same cell at any point in time. Therefore, transfers of particles between cells
need to be predicted and processed even though this is not done in the NNL algorithm described in Ref. [39].
Near neighbor lists are only built and maintained for DSMC particles that are in event-driven cells, essentially
exactly as described in Ref. [39]. For a DSMC particle i that is not in an ED cell ci we consider the smallest
sphere enclosing cell ci to be the (bounding) neighborhood (see Ref. [44]) of particle i and only update the
(position of the) neighborhood when the particle moves to another cell. This ensures that neighbor searches
using the NNLs are still exact without the overhead of predicting and processing NNL update events for the
majority of the DSMC particles.

3.2. The SEDMD algorithm

We have developed an algorithm that combines time-driven DSMC with event-driven MD by splitting the
particles between ED particles and TD particles. Roughly speaking, only the particles inside event-driven cells
are treated asynchronously as in EDMD. The rest of the particles are DSMC particles that are not even
inserted into the event queue. Instead, they are handled using a time-driven (TD) algorithm very similar to
that used in traditional DSMC.

It is important to note that the division of the DSMC particles between ED and TD handling is dynamic
and does not necessarily correspond to the partitioning of the cells into ED and TD cells. As non-DSMC par-
ticles move, time-driven cells may be masked as event-driven. This does not immediately make the DSMC par-
ticles in such cells event-driven. Rather, time-driven DSMC particles are moved into the event queue only
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when a collision with a non-DSMC particle is scheduled for them, when they move into a TD cell following a
time step, or when restarting the event handling. Event-driven particles are removed from the event queue
when they undergo cell transfer events into time-driven cells.

It is also possible to implement DSMC as a fully asynchronous event-driven (AED) algorithm and thus
avoid the introduction of an external time scale through the time step Dt. The fully asynchronous algorithm
introduces a novel type of event we term stochastic (DSMC) collisions, and it is discussed in more detail in
Appendix A. Asynchronous processing has a few advantages over the traditional (synchronous) time-driven
approach, notably, no errors due to time discretization [45] and improved efficiency at low collision rates. For
high densities the collision rate is high enough that the computational cost is dominated by collision process-
ing, and the asynchronous algorithm is actually less efficient due to the overhead of event queue operations.
Additionally, time-driven handling has certain important advantages in addition to its simplicity, notably, the
synchrony of the DSMC portion of the algorithm allows for parallelization and easy incorporation of algo-
rithmic alternatives such as multi-particle or multi-cell collisions, adaptive open boundary conditions, etc.

3.2.1. Event handling

The SEDMD algorithm handles events in order of increasing time of occurence, just as in EDMD. The
main types of events in the SEDMD algorithm are:

Update. Move particle i to the current simulation time t if ti < t.
Transfer. Move particle i from one cell to another when it crosses the boundary between two cells. This may
also involve a translation by a multiple of the lattice vectors when using periodic BCs.
Hard-core collision. Collide a particle i with a boundary such as a hard-wall or another particle j with which
it interacts.
Tether collision. Bouncing of a pair of tethered particles in a polymer chain when the tether stretches. This
collision is processed exactly like usual hard particle collisions [38,40].
Time step. Move all of the time-driven particles by Dt and process stochastic collisions between them.

The position ri and time ti as well as the impending event prediction of particle i are updated whenever an
event involving the particle is processed.

Both the event-driven and the time-driven DSMC algorithms process stochastic binary trial collisions. Pro-
cessing a trial collision consists of randomly and uniformly selecting a pair of DSMC particles i and j that are
in the same cell. For hard-spheres in the low-density limit, the probability of collision for a particular pair ij is
proportional to the relative velocity vrel

ij , and therefore the pair ij is accepted with probability vrel
ij =vmax

rel . If a pair
is accepted for collision than the velocities of i and j are updated in a random fashion while preserving energy
and momentum [30]. If a particle i that is in the event queue participates in an actual stochastic collision, then
that particle is updated to time tTS, its previous event prediction is invalidated and an immediate update event
is scheduled for i. If particle i had a previous scheduled event with a third-party particle k, an immediate
update should also be scheduled for particle k.

3.2.2. Time step events

The hybrid ED/TD algorithm introduces a new kind of time step event. This event is scheduled to occur at
times tTS ¼ nDt, where n 2 Z is an integer. When such an event is processed, all of the DSMC particles not in
the event queue are moved3 to time tTS and are then re-sorted into cells. Note that the ED particles are already
correctly sorted into cells. Particles that change from ED to TD cells and vice versa are removed or inserted
into the event queue accordingly.

Next, in each cell Cc Dt trial DSMC collisions are performed, where
3 No
have t
Cc ¼
NCðN C � 1Þrvmax

V c

ð1Þ
te that this update may involve moving some particles by less than Dt since the time of the last update for such particles does not
o be a time step event but could be, for example, a cell transfer.
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is the DSMC collision rate. Here r ¼ 4pR2
DSMC in three dimensions and r ¼ 4RDSMC in two dimensions is the

collisional cross-section, V c is the volume of the cell, and vmax is an upper bound for the maximal particle
velocity.4

In order to ensure correctness of the AED algorithm, a TD particle must not move by more than a certain
distance Dlmax when it undertakes a time step. Otherwise, it may overlap with a non-DSMC particle that could
not have anticipated this and scheduled a collision accordingly. Specifically, recall that the event-driven cells
are marked whenever a neighbor search is performed for a non-DSMC particle. We use
4 Mo
mainta
Dlmax ¼ ðwEDLc � DDSMCÞ=2;
where the masking width wED is the minimal number of cells covered by any neighbor search in any direction
(typically one or two), Lc is the (minimal) cell length, and DDSMC is the diameter of the DSMC particles. Any
DSMC particle whose velocity exceeds vmax ¼ Dlmax=Dt is inserted into the event queue at the end of a time
step, and similarly, any particles that would have been removed from the event queue are left in the queue
if their velocity exceeds the maximum safe velocity. Typically, only a small (albeit non-zero) fraction of the
DSMC particles falls into this category and the majority of the particles that are not in ED cells are not in
the event queue. In fact, we choose the time step to be as large as possible while still keeping the number
of dangerously fast DSMC particles negligible. This typically also ensures that DSMC particles do not jump
over cells from one time step to the next.

3.3. Adaptive open boundary conditions

In three dimensions, a very large number of solvent particles is required to fill the simulation domain. The
majority of these particles are far from the polymer chain and they are unlikely to significantly impact or be
impacted by the motion of the polymer chain. It therefore seems reasonable to approximate the behavior of
the solvent particles sufficiently far away from the region of interest with that of a quasi-equilibrium ensemble.
In this ensemble the positions of the particles are as in equilibrium and the velocities follow a local Maxwellian
distribution whose mean is the macroscopic local velocity. These particles do not need to be simulated explic-
itly, rather, we can think of the polymer chain and the surrounding DSMC fluid as being embedded into an
infinite reservoir of DSMC particles which enter and leave the simulation domain following the appropriate
distributions.

Such open (Grand Canonical) boundary conditions (BC) are often used in multi-scale (coupled) simula-
tions. It is not trivial to implement them when coupling the ‘‘reservoir” to an MD simulation, especially at
higher densities. An example of an algorithm that achieves such a coupling for soft-particle systems is USHER
[8]. It is also non-trivial to account for the velocity distribution of the particles entering the simulation domain
[46], as would be needed in a purely event-driven algorithm in which particles are inserted at the surface
boundary of the domain. However, the combination of a partially time-driven algorithm and an unstructured
(ideal gas) DSMC fluid makes it very easy to implement open BCs by inserting DSMC particles in the cells
surrounding the simulation domain only at time step events, based on very simple distributions.

3.3.1. Cell partitioning

For the purposes of implementing open BCs, we classify the cells as being interior, boundary, and external

cells. Our implementation uses bits in the cell bitmasks to mark a cell as being event-driven (bit cED), boundary
(bit cB), or external (bit cP). The different categories of cells are defined as:

Interior cells are those that are in the vicinity of non-DSMC particles, specifically, cells that are within a
window of half-width wint > wED cells around the centroid of a non-DSMC particle. The interior cells
are divided into event-driven and time-driven and are handled as described previously.
Boundary cells surround the interior cells with a layer of cells of thickness wB P 1 cells, and they represent
cells in which particles may be inserted during time step events. If a boundary or external cell is marked as
re precisely, 2vmax is an upper bound on the maximal relative velocity between a pair of particles. In our implementation we
in the maximal encountered particle velocity vmax and update it after every collision and also reset it periodically.
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an event-driven cell due to motion of the non-DSMC particles, then the simulation is aborted with an error.
This ensures that particle insertions cannot lead to overlaps with non-DSMC particles.
External cells are non-interior cells that are not explicitly simulated, rather, they provide a boundary con-
dition around the interior and boundary cells. This layer must be at least wB cells thick, and the cells within
a layer of wB cells around the boundary cells are marked as both external and boundary cells. All of the
remaining cells are purely external cells and simply ignored by the simulation.

Note that a cell may be a combination of these three basic categories. In fact, the following types of cells
appear in our simulations: (1) event-driven interior (I-ED) cells near non-DSMC particles or hard walls; (2)
time-driven interior (I-TD) cells; (3) time-driven boundary (B-TD) cells; (4) event-driven boundary (B-ED)
cells, next to hard walls; (5) time-driven boundary external (B+E) cells; (6) external (E) cells not explicitly
simulated.

Fig. 1 provides an illustration of this division of the cells for the simulation of a tethered polymer in two
and three dimensions. Our implementation traverses each of the non-DSMC particles in turn and masks the
cells in a window of half-width w cells around the cell containing the non-DSMC particle as interior if
0 6 w 6 wint, as boundary if wint < w 6 wint þ 2wB, and external if w > wint þ wB. Here wint > wED is a chosen
extent that covers the region where non-trivial flow occurs. Note that we do not require that the domains of
interior or non-external cells form a rectangular domain: The final shapes and even contiguity of such domains
depends on the positions of the non-DSMC particles. If this is not appropriate one can always make the sim-
ulation regions be unions of disjoint rectangular domains simply by padding with interior cells.

The division of the cells into event-driven, interior, boundary and external cells is rebuilt periodically during
the simulation. This rebuilding may only happen at the beginning of time steps, and requires a synchronization
of all of the particles to the current simulation time, a complete rebuilding of the cell bitmasks, and finally, a
re-initialization of the event processing. Importantly, particles that are in purely external cells are removed
from the simulation and those that are in event-driven cells are placed into the event queue scheduled for
an immediate update event. During the process of rebuilding the cell bitmasks cells that are masked as purely
external cells are also marked as unfilled with the sticky bit cs, which is initially not set. This indicates that
these cells need to be re-filled with particles later if they enter the simulation domain again due to the motion
of the non-DSMC particles. Once the cell bitmasks are rebuilt, a time step event is executed as described next.
Fig. 1. The partitioning of the domain into interior (I) [either event-driven (ED) or time-driven (TD)], boundary (B), and external (E) cells
in two (left) and three (right) dimensions for a polymer chain of 25 beads tethered to a hard wall. The cells are shaded in different shades of
gray and labeled in the two-dimensional illustration (wED ¼ 2;wint ¼ 5;wB ¼ 2). The DSMC particles are also shown.
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3.3.2. Time step events

When open BCs are used, a time step event consists of the following steps:

1. The time-driven DSMC particles are propagated by time Dt as usual. Those particles that move into purely
external cells are removed.

2. The cells that are both external and boundary, or unfilled interior cells, are traversed in order. In each such
cell, an appropriate number of trial reservoir particles are then inserted and the bit cs is reset if the cell was
unfilled. For each trial particle:
(a) The trial particle is propagated by a time step Dt to the current simulation time.
(b) If the particle moves into a non-external boundary cell, then the trial particle is converted into a real

particle.

3. Stochastic collisions are processed in all cells as usual.

In step 2b above a count N fast is kept of the number of trial particles that were not accepted because they
moved into a non-boundary cell. If positive, the count N fast is reported at the end of the time step to aid in
choosing wB sufficiently large so as to ensure that the tails of the velocity distribution are not truncated. In
our experience wB ¼ 2 suffices for reasonable choices of Dt.

3.3.3. Boundary conditions
In our current implementation the reservoir particles follow simple local-equilibrium ideal gas distributions.

The number of particles to insert in a given cell c is chosen from a Poisson distribution with the appropriate
density, the positions are uniformly distributed inside the cell, and the velocities are drawn from a biased
(local) Maxwellian distribution. The mean velocity vM and temperature T M for the local Maxwellian are cho-
sen according to the specified boundary conditions, typically uniform linear gradients. For example, if a uni-
form shear in the xy plane is to be applied, vM ¼ cycx̂, where yc is the y position of the centroid of the cell and c
is the shear rate. Using such biased local insertions allows one to specify a variety of boundary conditions. For
example, a free polymer chain in unbounded shear flow can be simulated without resorting to hard-wall bound-
aries or complicating Lee-Edwards conditions.

It should be noted that in principle we should not use a local Maxwellian velocity distribution for a system
that is not in equilibrium. In particular, for small velocity, temperature, and density gradients the Chapman–
Enskog distribution is the appropriate one to use in order to avoid artifacts near the open boundaries at length
scales comparable to the mean free path k [47]. We judge these effects to be insignificant in our simulations
since our boundary conditions are fixed externally and are thus not affected by the possible small artifacts
induced in the DSMC fluid flow, and since k is small.

In the future, we plan to replace the particle reservoir with a PDE-based (Navier–Stokes) simulation cou-
pled to the DSMC/MD one. Such a flux-preserving coupling has been implemented in the past for coupled
DSMC/Euler hydrodynamic simulations [47,48]. It is however important for the coupling to also correctly
couple fluctuations. This requires the use of fluctuating hydrodynamics in the coupled domain. Such solvers
and associated coupling techniques are only now being developed [26,27].

3.4. Further technical details

In this section we discuss several technical details of the SEDMD algorithm such as hard-wall boundary
conditions and the choice of DSMC parameters.

3.4.1. Slip and stick boundary conditions

We have already discussed open boundary conditions and their use to specify a variety of ‘‘far-field” flow
patterns. Additionally, there can also be hard-wall boundaries, i.e., flat impenetrable surfaces. These surfaces
can have a velocity of their own and here we discuss how particles reflect from such walls in the frame that
moves with the hard wall. Regardless of the details of particle reflections, the total change in linear momentum
of all the particles colliding with a hard wall can be used to estimate the friction (drag) force acting on the wall
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due to the flow. This can give reliable and quick estimates of the viscosity of a DSMC fluid, for example. For
hard-wall surfaces, we want to mimic the classical no-slip BC. Molecular simulations have found some slip;
however, at length scales significantly larger than the mean free path and/or the typical surface roughness
one may assume no-slip boundaries if the hard-wall boundary position is corrected by a slip length Lslip [3].

Our simulations of tethered polymers use thermal walls [30] kept at kT ¼ 1 to implement no-slip hard walls
at the boundaries of the simulation cell. Following the collision of a particle with such a wall, the particle
velocity is completely randomized and drawn from a half Maxwell–Boltzmann distribution. This automati-
cally ensures a nearly zero mean velocity at the wall boundary and also acts as a thermostat keeping the tem-
perature constant even in the presence of shear heating.

No-slip boundaries can also be implemented using (athermal) rough walls which reflect incoming particles
with velocity that is the exact opposite of the incoming velocity [49]. Similarly, slip boundary conditions, can
be trivially implemented by using specular walls that only reverse the normal component of the particle veloc-
ity. A mixture of the two can be used to implement partially rough walls, for example, a roughness parameter
0 6 rw 6 1 can be used as the probability of randomly selecting a rough versus a specular collision.

Similar considerations apply to the boundary conditions at the interface of a hard particle such as a poly-
mer bead. Most particle-based methods developed for the simulation of particle suspensions consider the sol-
vent particles as point particles for simplicity, and only MD or certain boundary discretization schemes [50]
resolve the actual solvent-solute interface. Specular BCs are typical of MD simulations and assume perfectly
conservative (elastic) collisions. However, if the polymer beads are themselves composed of many atoms, they
will act as a partially thermal and rough wall and energy will not be conserved exactly.

In the simulations reported here we have used rough wall BCs for collisions between DSMC and non-
DSMC particles. This emulates a non-stick boundary condition at the surface of the polymer beads. Using
specular (slip) conditions lowers the friction coefficient,5 but does not appear to qualitatively affect the behav-
ior of tethered polymers.

3.4.2. Constant pressure gradient flows

We note briefly on our implementation of constant pressure gradient boundary conditions, as used to sim-
ulate flow through open pipes. A constant pressure is typically emulated in particle simulations via a constant
acceleration a for the DSMC particles [51] together with periodic BCs along the flow (acceleration) direction.
In time-driven algorithms, one simply increments the velocity of every particle by aDt and the position by
aDt2=2 at each time step (before processing DSMC collisions). In SEDMD this is not easily implemented, since
the trajectory of the DSMC particles becomes parabolic instead of linear and exact collision prediction
between the DSMC and the non-DSMC particles is complicated. We have opted to implement constant pres-
sure BCs by using a periodic delta function forcing on the DSMC particles. Specifically, the velocities of all
DSMC particles are incremented at the beginning of each time step by aDt, and then stochastic collisions are
processed. All event-driven DSMC particles are scheduled for an immediate update event because their veloc-
ities changed.

3.4.3. Choice of DSMC collision frequency

The viscosity of the DSMC fluid is determined by the choice of collision frequency Cc and cell size Lc. Clas-
sical DSMC wisdom [30] is that cell size should be smaller than the mean free path, Lc � k, but large enough
to contain on the order of N c � 20 particles (in three dimensions). It is obvious that both of these conditions
cannot be satisfied for denser liquids, where k is only a fraction of the particle size. It is now well-known that it
is not necessary to have many particles per cell, so long as in Eq. (1) we use N cðN c � 1Þ instead of the tradi-
tional (but wrong) N 2

c .6 Coupled with the Poisson distribution of N c this gives a constant average total colli-
sion rate. However, using very small cells leads to very large variability of collision rates from cell to cell and
thus spatial localization of momentum transfer during each time step. Namely, very small cells rarely have two
5 The Stokes friction force has a coefficient of 4p for slip BCs instead of the well-known 6p for no-slip BCs.
6 Alternatively, self-collisions can be proposed and rejected.
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or more particles and thus most of the collisions will occur in the few cells that happen to be densely
populated.

We have aimed at trying to mimic what would happen in an MD simulation in the DSMC one. In an MD
simulation particles collide if their distance is equal to the particle diameter D. Therefore, we have aimed at
keeping the cell size at a couple of diameters, Lc � 2D. At typical hard-sphere liquid densities this leads to
N c � 5� 10, which seems appropriate in that it allows enough collision partners for most of the particles
but still localized the momentum transfer sufficiently. For very small mean free paths DSMC does not distin-
guish velocity gradients at length scales smaller than the cell size and, in a long-time average sense, localizes
the velocity gradients at cell interfaces [52]. We will assume that the structure of the fluid and flow at length
scales comparable to D (and thus Lc) is unimportant, and verify this by explicit comparisons to MD.

When the cell size is chosen such that N c � 5� 10 and the time step is reasonable, Dt � ð0:1� 0:2ÞLc=�v, Eq.
(1) gives collision frequencies that are sufficiently high so that almost all particles suffer at least one collision
every time step, and typically more than one collision. The effect of such repeated collisions is to completely
thermalize the flow to a local equilibrium (Maxwellian). We have observed that further increasing the collision
frequency does not change the effective viscosity and merely wastes computation. We have chosen to use the
lowest collision rate that still achieves a viscosity that is as high as using a very high collision rate. We find that
this is typically achieved when each particle suffers about half a collision or one collision each timestep [53].
Appendix B describes some multi-particle collision variants that may be more appropriate under different
conditions.

3.4.4. DSMC without hydrodynamics

The solvent exerts three primary effects on polymers in flow: (1) stochastic forces due to fluctuations in the
fluid (leading to Brownian-like motion), (2) (local) frictional resistance to bead motion, and (3) hydrodynamic
interactions between the beads due to perturbations of the flow field by the motion of the beads. Brownian
dynamics, the most common method for simulating the behavior of polymers in flow, typically assumes that
the drag on the polymer beads follows Stokes law. Additionally, the first two effects are coordinated via the
fluctuation-dissipation theorem. Finally, the third effect is sometimes added via approximations based on the
Oseen tensor, neglecting the possibility of large changes to the flow field due to the moving beads.

By turning off local momentum conservation one can eliminate all hydrodynamic interactions, and thus test
the importance of the coupling between polymer motion and flow. Yeoman’s et al. [20,34] have implemented a
no-hydrodynamics variant of the MPCD algorithm by randomly exchanging the velocities between all parti-
cles at each time step, thus preserving momentum and energy globally, but not locally. In the presence of a
background flow, such as shear, only the components of the velocities relative to the background flow are
exchanged. We have implemented a no-hydrodynamics variant of DSMC by neglecting momentum conserva-
tion in the usual stochastic binary collisions.7 Specifically, if particles A and B collide, the post-collisional
velocity of A is set to be the same magnitude as the pre-collisional velocity of B but with a random orientation,
and vice versa, conserving energy but not momentum. If the boundary conditions specify a background flow
such as a uniform shear the flow velocity is evaluated at the center of the DSMC cell and the collisions are
performed in the frame moving with that velocity. This forces the average velocity profile to be as specified
by the boundary conditions, but does not allow for perturbations to that profile due to hydrodynamic effects.

4. Performance improvement

It is, of course, expected that the SEDMD algorithm will give a performance improvement over EDMD.
However, to make an impact on real-world problems this performance gain must be an order of magnitude or
more improvement. Indeed, we find that SEDMD with adaptive boundary conditions can be up to two orders
of magnitude faster than EDMD under certain conditions. Note also that it is well-known that EDMD is
7 In this implementation switching hydrodynamics off becomes an alternative branch localized in the binary collision routine and the
algorithm is otherwise unchanged.
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already significantly faster than TDMD, although such a comparison is somewhat unfair since the hard-core
interaction potentials are very simple by design.

It is not really possible to directly compare SEDMD with EDMD since the two algorithms utilize different
solvents. One is a DSMC solvent in which particles overlap and exchange momentum stochastically, the other
is a hard-sphere liquid in which particles do not overlap and collide deterministically. The EDMD fluid is thus
more realistic and a direct comparison is somewhat unfair. This is unlike in simulations of equilibrium systems
where MC and MD are alternative methods for obtaining equilibrium averages.

The polymer chain is identical in both SEDMD and EDMD simulations, and therefore it is somewhat
meaningful to compare the two algorithms based on the total CPU time needed to simulate a unit of simulated
time for a single polymer chain in a still solvent. This is the comparison we report here, although the numbers
should be interpreted with caution. There are other possibilities, for example, one could compare the CPU
time needed to simulate a single relaxation time for the polymer chain. The important point we wish to convey
is that SEDMD is one to two orders of magnitude faster than an EDMD simulation, rather than claim exact
speedups.

We do not consider or use any parallelization because the EDMD component is very difficult to parallelize
scalably. However, because of the inherent simplicity and thus efficiency of the SEDMD algorithm, it is pos-
sible to study time scales and system sizes as large or larger than parallel simulations described in the literature
so far. The combined time-driven DSMC with event-driven MD algorithm can be parallelized using tradi-
tional techniques from TDMD if proper domain partitioning can be constructed, so that each event-driven
region is processed by a single processor.

4.1. Tethered polymer chain

As model problem we study a tethered polymer in three dimensions. The solvent density was chosen to be
typical of a moderately dense hard-sphere liquid. The performance and optimal choice of parameters depends
heavily on the size of the beads relative to the size of the solvent particles for both MD and the hybrid algo-
rithm. Realistically, beads (meant to represent a Kuhn segment) should be larger than the solvent molecules.8

This of course dramatically increases the computational requirements due to the increase in the number of
solvent particles (and also makes neighbor searching more costly). For this reason, most MD simulations
reported in the literature use solvent particles that are equivalent, except for the chain connectivity, to the sol-
ute particles.

Our first test problem is for a chain of 25 large beads, each about 10 times larger than the solvent particles
in both volume and in mass, in a box of size 2� 1:25� 1:25 polymer lengths, for a total of about
N ¼ 2:3� 105 particles. For the SEDMD simulations, we did not use bounding sphere complexes (BSCs)
[39], and therefore the neighbor search had to include next-nearest neighbor cells as well (i.e., wED ¼ 2).
For the corresponding MD simulations, BSCs were used. Under these conditions, SEDMD outperformed
EDMD by a factor of 35. If adaptive open BCs were used with wint ¼ 5, giving about N ¼ 3:2� 104 particles,
the speedup was 180. While this may seem an unfair comparison, it is important to point out that it is not clear
how to implement an adaptive simulation domain in pure EDMD.

The second test problem was for a chain of 30 beads which were identical to the solvent particles, except for
the added chain tethers. The number of particles in the simulation cell was thus much smaller, N ¼ 4:8� 104,
and wED ¼ 1. Adaptive BCs with wint ¼ 5 reduce the simulation domain to N ¼ 2:2� 104 particles. For these
parameters SEDMD with adaptive BCs was about 30 times faster than EDMD. Table 1 summarizes the large
performance gains of SEDMD relative to traditional EDMD.

One of the fundamental problems with multi-scale modeling is that typically the majority of the simulation
time is spent in the finest model since it is difficult to match the time scales of the coupled components [24]. For
example, MD simulations are so expensive that coupling them to almost any meso- or macro-scopic solver
leads to simulation times limited by that of MD simulations, albeit of a much smaller system. By virtue of
8 For example, in Ref. [19] an appropriate bead size for polyethylene is estimated at 1.5 nm, and for DNA (a much stiffer molecule with
large persistence length) at 40 nm.



Table 1
Performance gains of SEDMD relative to EDMD for a typical tethered polymer simulation in three dimensions

Standard BCs Adaptive BCs

Large beads 35 180
Small beads 20 30

The comparison is based on the CPU time needed to simulate a unit of simulation time. As explained in the test, a direct comparison is not
really fair or even possible, and therefore these numbers should be interpreted with care.
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the fast microscopic algorithm (EDMD instead of TDMD) and the efficient coupling, our method spends
comparable amounts of computation on the solute and immediately surrounding solvent, and on the solvent
particles. For the DSMC run with adaptive open BCs and large beads, about 50% of the time was spent in
manipulation of near neighbor lists. Most of the remaining time was spent inside the routine that takes a
DSMC timestep, and actual processing of DSMC collisions (both trial and real) occupied about 20% of
the total computation time. For small beads, the majority of the time, 80%, was spent in the DSMC time step
routine, and processing of DSMC binary collisions occupied about 35% of the total computation time.

5. Tethered polymer in shear flow

In this section results are presented for a tethered polymer chain in uniform shear in three dimensions. The
linear chain is in a good solvent and is attached at one end to a hard-wall, as represented by the plane y ¼ 0. A
linear velocity profile v ¼ cyx̂ along the x-axis is imposed sufficiently far from the chain. This problem was first
studied experimentally by Doyle et al. [7] and since then numerous computational studies have investigated
various aspects of the problem [8–11,13]. We will focus on the dynamics of the chain at low to medium flow
rates (i.e., small Weissenberg numbers) because we wanted to verify that our polymer and solvent model can
correctly reproduce non-trivial dynamics.

5.1. Background

The properties of a linear polymer in shear flow can be related to the dimensionless Weissenberg number
Wi ¼ cs0, where s0 ¼ sðc ¼ 0Þ is the relaxation time of the polymer chain when there is no shear. When Wi < 1
the flow barely affects the polymer, contrary to when Wi > 1. Different models have given similar properties for
the same Weissenberg number.

The original experimental study of tethered polymers [7] observed what was termed ‘‘cyclic dynamics” of
the chains. Specifically, the following cycle was proposed. When the polymer moves too far from the wall, pre-
sumably by an unusual fluctuation, it experiences a stronger flow and is stretched. A torque develops that then
pushes the chain closer to the wall, where it can contract again due to the weaker flow near the wall. The cycle
then repeats. Experiments [7] did not identify clear periodicity of this motion. Subsequent computational stud-
ies have looked for such a characteristic period for this cycling motion.

The MD study in Ref. [9] examined the cross-correlation function CX/ðtÞ, where X measures the extension
of the polymer along the flow, and / measures the angle of the chain with respect to the hard-wall. No exact
definitions of X or / were given even though there are several possibilities. One can use the difference between
the maximal and the minimal bead positions as a measure of the extension along a given axes. Optionally, one
can simply use the maximal position, or one can use the position of the last bead. Similarly, the angle of the
polymer can be based on a linear fit to the shape of the chain, on the position of the center of mass, the asym-
metry of the gyration tensor [12], or the position of the last bead. We have examined various choices and have
found little qualitative difference between the different choices. We have found the position of the end bead
rNb
¼ ðx; y; zÞ to be the best option and will also measure the angle / ¼ tan�1ðy=xÞ.

The authors of Ref. [9] found that Cx/ðtÞ develops a peak at positive time t� for sufficiently large Wi num-
bers (Wi > 10). This was interpreted as supporting the existence of a critical Weissenberg number Wi where the
flow effect on the polymer dynamics changes qualitatively. It was also found that t� decreases with increasing
Wi and the height of the peak increases. It is important to note that t� was found to be comparable to the



2658 A. Donev et al. / Journal of Computational Physics 227 (2008) 2644–2665
relaxation time of the polymer s0. Additionally, the internal relaxation time s was found to decrease with
increasing Wi, in agreement with theoretical predictions.

A subsequent study which used a hybrid MD/CFD model, and also a (free-draining) Brownian dynamics
model, claimed to observe periodic oscillations in the cross-correlation function between the extensions along
the flow and along the shear direction, CxyðtÞ [10,13]. However, the period of oscillation was found to be an
order of magnitude larger than the internal relaxation time, as revealed by a small peak in the power spectral
density PSDxyðf Þ of CxyðtÞ. A similar claim was made in Ref. [12] based on PSD// of the polymer angle auto-
correlation function9 C//ðtÞ for both a free polymer in unbounded shear flow and a tethered polymer in shear
flow. No results for the short-time cross-correlation functions were reported in either of these studies making it
difficult to reconcile the results obtained from PSDs with those in Ref. [9].

Most experimental and computational studies of the dynamics of polymers in shear flow have been for free
chains in unbounded flow [4]. In that problem, for Wi > 1, it is possible to identify a well-defined ‘‘tumbling”
event as the polymer rotates. The frequency of such tumbling times can be measured by visual inspection and
have been compared to the computed location of the peak in the PSDs [12,54]. The good match has thus been
taken as an indicator that PSDs peaks can be used to determine characteristic tumbling times and the same
methodology has been applied to a tethered polymer as well. However, for the case of a tethered chain it is
not easy to identify a periodic event such as a specific rare fluctuation. Therefore, it is not surprising that
we do not confirm the existence of a characteristic time that is an order of magnitude larger than the internal
relaxation time. One must here distinguish between ‘‘cyclic” (repetitive) events and periodic events. A Poisson
time process of rate C has a well-defined time scale C�1, however, the occurrence of such events is not periodic;
the delay between successive events is exponentially-distributed. In Ref. [54] such an exponential distribution is
proposed even for the delay between successive tumbling events for a free chain in unbounded flow. The PSD
of such a process is expected to be that of white-noise (i.e., flat) for frequencies small compared to C, and typ-
ically a power-law decay for larger frequencies (gray noise). The occurrence and shape of any local maxima
(peaks) or frequencies comparable to C depends on the exact nature of the correlations at that time scale.

5.2. Model parameters

As explained in 4, we have made several runs for different polymer lengths and also bead sizes. One set of
runs used either Nb ¼ 25 or 50 large beads each about 10 times larger than a solvent particle, using DSMC
with or without hydrodynamics (see Section 3.4.4) for the solvent. Another set of runs used either Nb ¼ 30
or 60 small beads each identical to a solvent particle, using DSMC or pure MD for the solvent. The beads
were rough in the sense that no-slip conditions were applied for the solvent-solute interface (see Section 3.4.1).

All of the runs used open boundary conditions (see Section 3.3), and the typical half-width of the interior
region was wint ¼ 5 or wint ¼ 7 cells around the polymer chain. The difference in the results, such as relaxation
times, between these runs and runs using wint ¼ 10 or runs using periodic BCs were negligible for the chain
sizes we studied.10 The solvent was a hard-sphere MD or DSMC fluid with volume fraction
/ � 0:25� 0:30, which corresponds to a moderately dense liquid (the melting point is /m � 0:49). The
Nb ¼ 30 runs were run for T � 6000s0 with wint ¼ 7, and such a run takes about 6 days on a single
2.4 GHz Dual-Core AMD Opteron processor. Even for such long runs the statistical errors due to the strong
fluctuations in the polymer conformations are large, especially for correlation functions at long time lags t > s.

5.3. Relaxation times

The relaxation time of the polymer s is well-defined only for linear models. It is often measured by fitting an
exponential to the auto-correlation function of the end-to-end vector rendðtÞ ¼ rNb

� r1, where ri denotes the
position of the ith bead [6]. We will separately consider the different components of the end-to-end vector
9 The PSD is equivalent to the Fourier spectrum power of the angle trace /ðtÞ based on the convolution theorem.
10 It is expected that using a small wint would truncate the (long-ranged) hydrodynamic interactions and thus increase the relaxation time.

We observe such effects for the Nb ¼ 50 chains, however, the effect is too small compared to the statistical errors to be accurately
quantified.



Fig. 2. Dependence of the relaxation times of the different components of the end-to-end displacement vector on the Weissenberg number.
The relaxation times have been renormalized to equal unity for Wi ¼ 0 for direct comparison. For each Wi, sx is shown with circles, sy with
squares, and sz with diamonds. Different textures of the symbols are used for the different models, as indicated in the legend. The inset
shows sy=sx and sz=sx for the different runs.
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rend ¼ ðx; y; zÞ and fit an exponential to the Cxx, Cyy and Czz auto-correlations functions to obtain the relaxation
times sx; sy and sz as a function of Wi. The initial relaxation of the various auto-correlation functions CðtÞ is
faster than exponential, and the statistical error at longer times is large even for long runs. We therefore fit the
exponentials to the portion of the curves at small times, when 0:2 6 CðtÞ 6 0:8. The fits are not perfect and
there are large statistical errors depending on the length of the run and the number of samples used to average
CðtÞ, and the relaxation times and Weissenberg numbers we quote should be taken as approximate.

We find that sz is always the largest, especially for large Wi (for Wi ¼ 0; sz ¼ sx by symmetry), and sy is
always smaller by at least a factor of two,11 even for Wi ¼ 0, as illustrated in the inset in Fig. 2. We take
s0 ¼ sxðWi ¼ 0Þ ¼ szðWi ¼ 0Þ as the definition of the polymer relaxation time. Fig. 2 illustrates the dependence
of sxðWiÞ=sxðWi ¼ 0Þ on Wi, and similarly for the y and z directions. Quantitatively similar (but not identical)
results are observed independently of the details of the polymer model and even the existence of hydrodynamic
interactions.

The relaxation times we observe for Wi ¼ 0 are consistent with what is predicted from theoretical consid-
erations, s � 0:9gb3N 1:8

b =kT , where g is the viscosity and b is the effective bead radius. Direct measurements of
the viscosity of the DSMC liquid show that it has viscosity rather close to that of the corresponding MD liquid
for the specific parameters we use. Using the Enskog viscosity of the MD liquid and the tether length as b, we
calculated s � 19 for the case of N b ¼ 25 with large beads, to be compared to the numerical results from
DSMC s ¼ 25� 5. The MD runs for the case of large beads are not long enough to determine the relaxation
time accurately. We expect that the difference between MD and DSMC will become more pronounced for
smaller beads, and indeed, for N b ¼ 30 we obtain sMD � 3sDSMC.

Turning hydrodynamics off in DSMC extends the relaxation times (and also the collapse times for an ini-
tially stretched polymer) by a factor of 3–5, as already observed using MPCD [20] and as predicted by Zimm
theory. It is difficult to directly compare DSMC with and without hydrodynamics since switching hydrody-
namics off, in our model, affects the friction force between the beads and the solvent. This is unlike the models
where the friction force is an added phenomenological term that has an adjustable coefficient.
11 This is because of the constraint that the polymer chain must be above the plane y ¼ 0 at all times, which reduces the available
configuration space.
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5.4. Cyclic dynamics

We now turn our attention to cross-correlations between polymer extensions in the x and y directions. We
have found that the cross-correlations lags are most visible in the x and y positions of the last bead, CxyðtÞ. Our
results for CxyðtÞ are shown in Fig. 3, along with Cx/ðtÞ as an inset. The results for Cx/ðtÞ compare well with
those in Ref. [9], although we see the secondary peak developing at somewhat lower Wi. We do not see any
evidence for the existence of a critical Wi: There are peaks at both positive and negative time in CxyðtÞ for all
Wi. Some cross-correlations, such as Cx/ðtÞ, have a large positive or negative cusp at the origin at Wi ¼ 0 and it
is this cusp that masks the peaks at non-zero lags for small Wi.

In Fig. 4 we compare CxyðtÞ at Wi � 2 for several different models12 and see a good match, even for the
DSMC runs ignoring hydrodynamics (momentum conservation). This indicates that the dynamics of the
chains is primarily driven by the competition between the internal stochastic motion (entropy) and the external
forcing due to the shear, and not hydrodynamic interactions between the beads or the effect of the motion of
the chain on the flow.

We do not discuss the origin and locations of the peaks in the cross-correlation functions in detail in this
work. These peaks are indicative of the existence of a correlated motion in the xy plane, but do not uniquely
identify that motion. An important question to address is the existence of a time scale other than the internal
relaxation time sðWi). In Fig. 5 we show a renormalized cross-correlation function
12 Th
numbe
~Cxy ¼
1

Wi
Cxy

t
sðWiÞ

� �
in an unsuccessful attempt to collapse the data for different Wi. While the match is not perfect the picture does
not point to the existence of a time scale shorter than sðWiÞ. We also do not see any convincing evidence for
e Weissenberg numbers were calculated after the runs were completed and therefore the different runs are not at the exact same Wi

r.



-2

-2

-1.5

-1.5

-1

-1

-0.5

-0.5

0

0

0.5

0.5

1

1

1.5

1.5

2

2

t / τx(Wi)

-0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

0.1

C
xy

  /
  W

i

Wi=0.6
Wi=1.2
Wi=1.8
Wi=3.1
Wi=5.6

Fig. 5. Cross-correlation function ~Cxy for N ¼ 30 DSMC runs as in Fig. 3 but with time renormalized by sðWiÞ and the correlation
magnitude scaled by Wi.

-1 -0.5 0 0.5 1 1.5 2

0

-0.1

0

0.1

0.2

N=30 (MD), Wi=1.9
N=30 (DSMC), Wi=1.8
N=30 (noHI), Wi=2.1
N=25 (DSMC), Wi=1.6
N=60 (DSMC), Wi=2.5
N=50 (DSMC), Wi=2.0

t / τ

C
xy

Fig. 4. Comparison of CxyðtÞ for Weissenberg number of about 2 for several different models, after the time axes has been normalized.

A. Donev et al. / Journal of Computational Physics 227 (2008) 2644–2665 2661
coherent and reproducible correlations on time scales significantly larger than s, even in various power spec-
tral densities. Our results do not rule out the possibility of a repetitive motion of the chain with widely varying
cyclic times (e.g. exponential tail) but we have not observed any direct evidence for such cycling either. We will
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report more detailed results on the dynamics of tethered polymer chains along with comparisons with Brown-
ian dynamics and Lattice–Boltzmann in future work.

6. Conclusions

We presented a Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm that combines hard-
sphere event-driven molecular dynamics (EDMD) with direct simulation Monte Carlo (DSMC), aimed at sim-
ulating flow in suspensions at the microscale. The overall algorithm is still event-driven, however, the DSMC
portion of the algorithm can be made time-driven for increased efficiency. The fundamental idea is to replace
the deterministic (MD-like) interactions between particles of certain species with a stochastic (MC-like) colli-
sion process, thus preserving the phase space dynamics and conservation laws but ignoring the liquid struc-
ture. The SEDMD methodology correctly reproduces hydrodynamic behavior at the macroscale but also
correctly represents fluctuations at the microscale. A similar algorithm has been proposed using time-driven
(soft-particle) MD and a multi-particle collision variant of DSMC [23].

As an application of such a methodology we have considered the simulation of polymer chains in a flowing
solution, and in particular, a polymer tethered to a hard-wall and subject to shear flow. We have implemented
open boundary conditions that adaptively adjust the simulation domain to only focus on the region close to
the polymer chain(s). The algorithm is found to be efficient even though it is not parallelized, and it is found to
reproduce results obtained via molecular dynamics and other algorithms in the literature, after adjusting for
the correction to transport coefficients and compressibility of the DSMC fluid relative to the MD fluid.

We studied the dynamics of a tethered polymer subject to pure shear and found consistent results between
EDMD and SEDMD and also previous TDMD studies. We find that neither the size of the polymer beads
relative to the solvent particles, nor the correct representation of the hydrodynamic interactions in the fluid,
qualitatively alter the results. This suggests that fluctuations dominate the dynamic behavior of tethered poly-
mers, consistent with previous studies. Our results do not find periodic motion of the polymer and show that
the cross-correlation between the polymer extensions along the flow and shear directions shows a double-peak
structure with characteristic time that is comparable to the relaxation time of the polymer. This is in contrast
to other works that claim the existence of a new time scale associated with the cyclic motion of the polymer.
We will investigate these issues further and compare with Brownian dynamics and Lattice–Boltzmann simu-
lations in future work.

We expect that this and related algorithms will find many applications in micro- and nano-fluidics. In par-
ticular, the use of DSMC instead of expensive MD is suitable for problems where the detailed structure and
chemical specificity of the solvent do not matter, and more general hydrodynamic forces and internal fluctu-
ations dominate. Using a continuum approach such as Navier–Stokes (NS) equations for the solvent is ques-
tionable at very small length scales. Furthermore, the handling of singularities and fluctuations is not natural
in such PDE methods and various approximations need to be evaluated using particle-based methods. Since
the meshes required by continuum solvers for microflows are very fine, it is expected that the efficiency of par-
ticle methods will be comparable to PDE solvers. Nevertheless, algorithms based on fluctuating hydrodynam-
ics descriptions will be more efficient when fluctuations matter. Comparisons and coupling of DSMC to
fluctuating NS solvers is the subject of current investigations [27].
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Appendix A. AED variants of DSMC

In this Appendix we discuss a fully asynchronous event-driven (AED) implementation of DSMC. The
advantage of asynchronous algorithms is that they do not introduce any artificial time scales (such as a time
step) into the problem [44]. We have validated that the AED algorithm produces the same results as the time-
driven one by comparing against published DSMC results for plane Poiseuille flow of a rare gas [51]. We have
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also implemented traditional time-driven (TD) DSMC and find identical results when the time step is suffi-
ciently small. We find that the event-driven algorithm is almost an order of magnitude slower than the time
driven one at higher densities, and only becomes competitive at very low densities, which is the traditional
domain of interest for DSMC. The overhead of the AED algorithm comes from the need to re-predict the next
event and update the event queue whenever a particle suffers a DSMC collision. This cost is in addition to the
equivalent cost in the time-driven algorithm, namely, moving the particles forward in time and colliding them.

The AED algorithm introduces a new type of event, a stochastic (trial) collision between two DSMC par-
ticles that are in the same cell (see Section 3.2). These trial collisions occur in a given cell c as a Poisson process
with a rate given by Eq. (1). There are several approaches to scheduling and processing DSMC collisions
directly borrowed from algorithms for performing Kinetic Monte Carlo simulations, which are synchronous

event-driven algorithms [55]. The simplest, and in our experience, most efficient, approach to AED DSMC
is to use cell rejection to select a host cell for the stochastic collisions. The rate of DSMC collisions is chosen
according to the cell with maximal occupancy Nmax

c ;C ¼ N cellsC
max
c . The randomly chosen cell c of occupancy

N c is accepted with probability N cðN c � 1Þ=½Nmax
c ðN max

c � 1Þ� and a random pair of particles i and j are chosen
from Lc. Since the DSMC fluid is perfectly compressible, the maximal cell occupancy can be quite high for
very large systems, and this leads to decreasing cell acceptance probability as the size of the system increases.

One can avoid cell rejections altogether. The first option is to associate stochastic collisions with cells and
schedule one such collision-in-cell event per cell. The event time is easily predicted at any point in time t to
occur at time t � C�1

c ln r, where r is a uniform random deviate in (0,1). These event times are put in an event
queue, which may be the same as the EDMD event queue, or it may be separate queue then the two queues
may be merged only at the top. The collision-in-cell event times need to updated whenever a cell occupancy N c

changes, that is, whenever a cell transfer is processed. This makes this algorithm inefficient. Another alterna-
tive is to recognize that the sum of a set of independent Poisson processes is a Poisson process with a rate that
is the sum of the individual rates, C ¼

P
cCc. That is, DSMC collisions occur in the system as a Poisson pro-

cess with rate C. When processing such an event one has to first choose the cell with probability Cc=C, which
requires some additional data structures to implement efficiently [55]. For example, the cells could be grouped
in lists based on their occupancy and then an occupancy chosen first with the appropriate weight, followed by
selection of a cell with that particular occupancy.

Finally, it is also possible to use a mixture of the asynchronous and time-driven variants of DSMC. The
asynchronous algorithm can be used for DSMC particles in event-driven cells, and the time-driven one else-
where. This may be useful in situations where the time scale of the event-driven component is significantly
smaller than the time step Dt and thus time stepping would lead to discretization artifacts.

In the AED variant of DSMC constant pressure BCs (see Section 3.4.2) can be implemented by adding a
new type of acceleration event. When such an event is processed, all of the particles are brought to the same
point in time (synchronized), the velocities of each DSMC particle i is incremented by aDti, where Dti is the
elapsed time since the last acceleration event. Following an acceleration event, the event queue is reset because
all of the event predictions are invalidated by the change in particle velocities. The acceleration events occur as
a Poisson process with a suitably chosen rate, for example, ensuring that the average or maximal change in
velocity is a fraction of the average particle velocity. Note that the choice of this acceleration rate introduces
an artificial time constant in the algorithm similar to the time step Dt in time-driven DSMC.

Appendix B. Multi-particle collisions in DSMC

Under dense liquid conditions, DSMC binary collisions are so numerous (see Section 3.4.3) that the
velocities of the particles are effectively thermalized to the local Maxwell distribution. We have imple-
mented a variant DSMC algorithm in which at every time step the velocities of all of the particles are
redrawn from a local Maxwellian, preserving the total linear momentum and energy in each cell [56].
We found that this variant of DSMC is less efficient than and behaves similarly to the usual binary col-
lision DSMC. Reference [57] describes a more general algorithm (TRMC) that combines binary collisions
for a subset of the particles with drawing from a local Maxwellian for the remainder of the particles, and
under dense liquid conditions this typically degenerates to complete randomization of all of the velocities
at every time step. Until a theoretical framework is established for the behavior of DSMC-like algorithms



2664 A. Donev et al. / Journal of Computational Physics 227 (2008) 2644–2665
at high densities the classical DSMC algorithm seems to be the best alternative in terms of simplicity, effi-
ciency, and theoretical foundation.

We mention that, strictly speaking, we should use as V c in Eq. (1) not the volume of the cell, but the unoc-
cupied cell volume, i.e., the portion of the cell not covered by non-DSMC particles.13 It is however difficult to
dynamically maintain an accurate estimate of the cell coverage, and the complication does not appear to be
worth the implementation complexity. In particular, an approximation is already made in neglecting the struc-
ture of the solvation layer around a polymer bead. Furthermore, the majority of the cells that are partially
covered by a polymer bead will be entirely or almost entirely covered so that they would at most contain a
single DSMC particle, in which case the probability of a DSMC collision would be very low anyway. Finally,
as explained in Section 3.4.3, the exact collision frequency does not really matter. In the context of multi-par-
ticle collision dynamics, Ref. [49] proposes the use of virtual particles filling the partially-filled cells as a way to
achieve more accurate stick boundary conditions.
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