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Abstract

We formulate and study computationally the fluctuating compressible Navier-Stokes equations

for reactive multi-species fluid mixtures. We contrast two different expressions for the covariance

of the stochastic chemical production rate in the Langevin formulation of stochastic chemistry,

and compare both of them to predictions of the chemical Master Equation for homogeneous well-

mixed systems close to and far from thermodynamic equilibrium. We develop a numerical scheme

for inhomogeneous reactive flows, based on our previous methods for non-reactive mixtures [K.

Balakrishnan, A. L. Garcia, A. Donev and J. B. Bell, Phys. Rev. E 89:013017, 2014]. We study the

suppression of non-equilibrium long-ranged correlations of concentration fluctuations by chemical

reactions, as well as the enhancement of pattern formation by spontaneous fluctuations. Good

agreement with available theory demonstrates that the formulation is robust and a useful tool in

the study of fluctuations in reactive multi-species fluids. At the same time, several problems with

Langevin formulations of stochastic chemistry are identified, suggesting that future work should

examine combining Langevin and Master Equation descriptions of hydrodynamic and chemical

fluctuations.

PACS numbers: 05.40.-a,47.11.-j,47.10.ad, 47.70.Fw

Keywords: Fluctuating hydrodynamics, Fluctuating Navier-Stokes equations, Multi-species, Thermal fluc-

tuations
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I. INTRODUCTION

Chemical reactions are of central importance in both natural and industrial processes

spanning the range of length scales from the microscopic, through the mesoscopic, and up

to macroscopic scales. It is the rule, rather than the exception, that chemical reactions

are strongly coupled to hydrodynamic transport processes, such as advection, diffusion,

and thermal conduction. Prominent examples include diffusion-limited aggregation, pattern

and chemical wave formation in reactive solutions, reaction-driven convective instabilities,

heterogeneous catalysis, combustion, complex biological processes, and others.

Fluctuations affect reactive systems in multiple ways. In stochastic biochemical sys-

tems, such as reactions inside the cytoplasm, or in catalytic processes, some of the reacting

molecules are present in very small numbers and therefore discrete stochastic models are

necessary to describe the system. In diffusion-limited reactive systems, such as simple coag-

ulation A+A→ A2 or annihilation A+B → C, spatial fluctuations in the concentration of

the reactants grow as the reaction progresses and must be accounted for to accurately model

the correct macroscopic behavior. [1, 2] In unstable systems, such as diffusion-driven Turing

instabilities [3–7], detonation [8], or buoyancy-driven convective instabilities [9], fluctuations

are responsible for initiating the instability and may profoundly affect its subsequent tem-

poral and spatial development. In systems with a marginally-stable manifold, fluctuations

lead to a drift along this manifold that cannot be described by the traditional law of mass

action, and has been suggested as being an important mechanism in the emergence of life

[10–12].

Much of the work on modeling stochastic chemistry has been for homogeneous, “well-

mixed” systems, such as continuously stirred tank reactors, but there is increasing interest in

spatial models [13]. When hydrodynamic transport is included, the focus has almost exclu-

sively been on species diffusion, and there is a large body of literature on stochastic reaction-

diffusion models. A Master Equation approach, notably, the Chemical Master Equation

(CME), is widely accepted for modelling well-mixed systems. The Reaction-Diffusion Mas-

ter Equation (RDME) extends this type of approach to spatially-varying systems [14–16].

In the RDME, the system is subdivided into reactive subvolumes (cells) and diffusion is

modeled as a discrete random walk by particles moving between cells, while reactions are

modeled using local CMEs [17, 18]. A large number of efficient and elaborate event-driven
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kinetic Monte Carlo algorithms for solving the CME and RDME, exactly or approximately,

have been developed with many tracing their origins to the Stochastic Simulation Algo-

rithm (SSA) of Gillespie [19, 20]. The issue of convergence as the RDME grid is refined is

delicate. [21–23] Variants of the RDME have been proposed that improve or eliminate the

sensitivity of the results to the grid resolution, such as the convergent RDME (CRDME)

of Isaacson [23] in which reactions can happen between molecules in neighboring cells as

well. Particle-based spatial methods for stochastic chemistry include reactive Brownian dy-

namics [24, 25], Green’s Function Reaction Dynamics [26, 27], first-passage kinetic Monte

Carlo [28–31], the small-voxel tracking algorithm [32], and others.

In large part, the development of stochastic reaction-diffusion models has been divorced

from work in the fluid dynamics community. Full hydrodynamic transport including ad-

vection, sound waves, viscous stress, thermal conduction, etc., as well as nonequilibrium

thermodynamics and chemistry, are fairly common in the reacting flow community. See,

for example, textbooks by Kuo [33] and Law [34]. However work in this area focuses on

macroscopic modeling; spontaneous thermal fluctuations, either chemical or hydrodynamic,

are typically not considered.

Within the field of nonequilibrium thermodynamics, the fluctuation-dissipation theorem

provides the connection between hydrodynamic transport and spontaneous fluctuations. In

particular, as an extension of conventional hydrodynamic theory, fluctuating hydrodynam-

ics incorporates mesoscopic fluctuations in a fluid by adding stochastic flux terms to the

deterministic fluid equations [35]. These noise terms are white in space and time and are

formulated using fluctuation-dissipation relations to yield equilibrium covariances of the

fluctuations in agreement with equilibrium statistical mechanics. Linearized fluctuating hy-

drodynamics was first introduced by Landau and Lifshitz [36] and has since been used to

study simple and binary fluid systems in and out of equilibrium [35].

A number of numerical algorithms for solving the equations of fluctuating hydrodynam-

ics have also been developed [37–44]. These algorithms draw from a wealth of deterministic

computational fluid dynamics (CFD) techniques and handle transport such as diffusion in

a much more sophisticated fashion than random hopping between cells. For example, they

include effects such as cross-diffusion, barodiffusion, thermodiffusion (i.e., Soret effect) as

well as advection by fluid motion. Furthermore, semi-implicit temporal discretizations and

higher-order spatial discretizations can be used, even as fluctuations due to the discrete
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nature of the fluid are accounted for. In this spirit, Koh and Blackwell [45] propose using

a more traditional gradient-driven diffusive flux formulation consistent with CFD practice

within an CME-based description; however, their treatment of fluctuations is rather ad hoc

and not consistent with the formulation of stochastic mass fluxes in fluctuating hydrody-

namics. Very recently a spatial chemical Langevin formulation (SCLE) was proposed [46] in

which the chemical Langevin approximation [47] is applied to the RDME treating diffusive

hops as another reaction in a very large reaction network. While this leads to a formulation

similar to fluctuating hydrodynamics it has several shortcomings, notably, it does not allow

one to treat diffusion using advanced CFD algorithms.

Investigations utilizing fluctuating hydrodynamics have revealed the crucial importance

of hydrodynamic fluctuations in transport mechanisms, especially mass and heat diffusion.

Notably, it is now well-known that all nonequilibrium diffusive mixing processes are accom-

panied by long-range correlations of fluctuations. In certain scenarios these nonequilibrium

fluctuations grow in physical extent well beyond molecular scales with magnitudes far greater

than those of equilibrium fluctuations. These so-called “giant fluctuations” are observed in

laboratory experiments [48–50], and arise because of the coupling between thermal veloc-

ity fluctuations and concentration or temperature fluctuations. In fact, it has recently been

shown using nonlinear fluctuating hydrodynamics that mass diffusion in liquids is dominated

by advection by thermal velocity fluctuations [51]. Therefore, modeling diffusion using collec-

tions of independent random walkers, as done in the RDME, is fundamentally inappropriate

for describing the nature of hydrodynamic fluctuations at microscopic and mesoscopic scales;

instead, hydrodynamic coupling (correlations) between the diffusing particles must be taken

into account [52]. Including fluctuations within the continuum description has also been

shown to be important in particle-continuum hybrids [53], and should also benefit hybrid

models for reaction-diffusion systems [54].

In the hydrodynamic equations chemical reactions may be treated as a white noise source

term [16, 55], in a fashion analogous to the stochastic transport fluxes. The study of fluc-

tuating hydrodynamic models that include chemical reactions is relatively recent and there

are few computational studies in the literature. Stochastic reaction-diffusion equations are

considered by Atzberger in [56], but only within the reaction-diffusion framework and not

accounting for fluctuations in the chemical production rates. A thorough discussion of

stochastic formulations of chemical reactions within the framework of statistical mechanics
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can be found in the monograph by Keizer [57]; Keizer does not, however, consider hy-

drodynamic transport in spatially-extended systems in depth. In a sequence of important

papers [58–61], chemical reactions have been incorporated in a nonlinear nonequilibrium

thermodynamic formalism, making it possible to combine realistic nonlinear deterministic

models based on the traditional law of mass action (LMA) kinetics with fluctuating hydro-

dynamics. When considering fluctuations, however, a linearized approximation was used

by the authors, limiting the range of applicability to modeling small Gaussian fluctuations

around a macroscopic state that evolves in a manner unaffected by the fluctuations. A

more phenomenological approach was followed to fit the LMA into the nonequilibrium ther-

modynamics GENERIC formalism by Grmela and Ottinger [62], but fluctuations were not

considered. Here, we formulate a complete set of fluctuating hydrodynamic equations for a

reactive multispecies mixture of ideal gases. We account for mass, momentum and energy

transport, and chemical reactions, and consider a nonlinear formalism for describing the

thermal fluctuations.

Hydrodynamics is a macroscopic coarse-grained description, and fluctuating hydrody-

namics is a mesoscopic coarse-grained description. As such, both descriptions rely on the

approximation that the length and time scales under consideration are much larger than

molecular, i.e, that each coarse-grained degree of freedom involves an average over many

molecules. In fact, although formally written as a continuum model, fluctuating hydrody-

namics is, in truth, a discrete model that only makes sense when seen as a coarse-grained

description for the evolution of a collection of spatially-discrete hydrodynamic variables in-

volving averages over many nearby molecules [63, 64]. The fact that many molecules are

involved in the reactions allows for a Langevin-like continuum description (i.e., diffusion

processes) of the fluctuations instead of discrete models such as master equations (i.e., jump

processes). The accuracy of Langevin formulations for chemically reacting systems has long

been a topic of debate [65, 66]. In this work, we take the first step in combining realistic fluid

dynamics with a stochastic chemical description and adopt a Langevin approach to describ-

ing fluctuations. In future work, we will explore combining Langevin and ME approaches

together, thus further bridging the apparent gap between the two.

Here, we first formulate the fluctuating reactive Navier-Stokes-Fourier equations, discuss

their physical validity, and develop numerical methods for solving the stochastic partial

differential equations. The methodology is a direct extension of our previous work on fluc-
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tuating hydrodynamics for non-reactive multispecies gas mixtures [42] to include a Langevin

model of chemical reactions. We consider two distinct Langevin models, which are identical

when very close to chemical equilibrium but differ far from thermodynamic equilibrium.

The first model, which we term the Log-Mean equation (LME), is based on the GENERIC

formulation of Grmela and Ottinger [62], but can be traced to older work on the subject

as well [57, 67, 68]. The second Langevin model is the more familiar Chemical Langevin

Equation [47, 57, 69].

The resulting algorithms are used to assess the importance of thermal fluctuations in

several simple but relevant examples. The first example is a simple dimerization reaction,

which has been studied theoretically in prior work by others [59–61]. Our second example is

the Baras-Pearson-Mansour (BPM) reaction network [70, 71], which exhibits a rich behavior

ranging from bistability to limit cycles. We study these examples in both well-mixed small-

scale systems, comparing with the Chemical Master Equation, and in spatially-extended

systems, comparing with fluctuating hydrodynamic theory and previous numerical work.

For the latter, rather than imposing the non-equilibrium constraint by fixing concentrations

in the bulk, the constraints are applied as boundary conditions, thus maintaining strict

consistency with equilibrium thermodynamics, including microscopic reversibility (detailed

balance), in all of the models we study. These examples illustrate how thermal fluctuations

drive giant concentration fluctuations and how they affect the rate of pattern formation in

an inhomogeneous system.

II. THEORY

In this section, we summarize the mathematical formulation of the complete fluctuating

Navier-Stokes (FNS) equations for compressible reactive multispecies fluid mixtures. The

details for non-reactive fluid mixtures are presented in [42]; here we focus on the chemistry.

The formulation is first presented in its general form; the specific case of reactions in ideal

gas mixtures is treated in Section II C.

The species density, momentum and energy equations of hydrodynamics for a mixture of

NS species are given by

∂

∂t
(ρs) +∇ · (ρsv) +∇ ·F s = msΩs, (s = 1, . . . NS) (1)
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∂

∂t
(ρv) +∇ ·

[
ρvvT + pI

]
+∇ ·Π = ρg, (2)

∂

∂t
(ρE) +∇ · [(ρE + p)v] +∇ · [Q + Π · v] = ρv · g, (3)

where ρs, ms, and Ωs are the mass density, molecular mass, and number density production

rate for species s. The variables v, p, and E denote, respectively, fluid velocity, pressure,

and specific total energy for the mixture. The total density is ρ =
∑NS

s=1 ρs, g is gravitational

acceleration, and superscript T denotes transpose.

We consider a system with NR elementary reactions with reaction r written in the form,

Rr :

NS∑
s=1

ν+
srMs �

NS∑
s=1

ν−srMs

Here Ms are the chemical symbols and ν±si are the molecule numbers for the forward and

reverse reaction r. The stoichiometric coefficients are νsr = ν−sr − ν+
sr and mass conservation

requires that
∑

s νsrmr = 0. [57] For simplicity of notation, when there is no ambiguity we

omit the range of the sums and write
∑

s for sums over all species, and write
∑

r for sums

over all reactions. Note that chemistry does not appear explicitly in the energy equation (3)

since the species heat of formation is included in the specific total energy.

Transport properties are given in terms of the species diffusion flux, F , viscous tensor,

Π, and heat flux, Q. Mass conservation requires that the species diffusion flux and the

production rate due to chemical reactions satisfy the constraints,∑
s

F s = 0 and
∑
s

msΩs = 0 (4)

so that summing the species equations gives the continuity equation,

∂

∂t
ρ+∇ · (ρv) = 0. (5)

The detailed form of the transport terms is summarized in Appendix A, see [42] for details.

It is important to note that we neglect any possible effect of the chemical reactions on the

transport coefficients of the mixture.

We write the chemical production rate as the sum of a deterministic and a stochastic

contribution, Ωs = Ωs + Ω̃s, with the stochastic rate going to zero in the deterministic

limit. [72, 73] To formulate these production rates we define the dimensionless chemical

affinity as,

Ar = − 1

kBT

∑
s

νsrmsµs =
∑
s

ν+
srµ̂s −

∑
s

ν−srµ̂s, (6)
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where µs is the specific chemical potential (i.e., per unit mass) and µ̂s = msµs/kBT is the

dimensionless chemical potential per particle; T and kB are temperature and Boltzmann’s

constant, respectively. Summing over reactions gives the deterministic production rate for

species s as [62]

Ωs =
∑
r

νsr
p

τrkBT
Âr (7)

where

Âr = exp

(∑
s

ν+
srµ̂s

)
− exp

(∑
s

ν−srµ̂s

)
=
∏
s

eν
+
srµ̂s −

∏
s

eν
−
srµ̂s (8)

and τr is a time scale characterizing the reaction rate. This form of the deterministic equa-

tions, while at first sight appearing different from the more familiar law of mass action

(LMA), is fully consistent with it. The production rate, as given by (7) and (8), is also

consistent with nonequilibrium thermodynamics [59]; this way of expressing the production

rate in terms of a thermodynamic driving force (difference of exponentials of chemical po-

tentials) can be seen as a generalization of the LMA to non-ideal systems, as elaborated in

Section II C.

For a binary mixture undergoing a dimerization reaction, the deterministic part of the

complete set of hydrodynamic equations including chemical reactions has been fit into a non-

linear nonequilibrium thermodynamics formalism in Ref. [59] by introducing an additional

reaction coordinate, as inspired by earlier work of Pagonabarraga et al. [58]. This extends

earlier considerations of dimerization reactions in a strictly linear fluctuating chemistry for-

malism [74]. In the limit of high reaction barrier the equations written in [59] are equivalent

to the ones we employ here even though our notation is different. However, fluctuating

contributions in [59] are only considered in a linearized approximation, severely limiting

the range of applicability to describing small Gaussian fluctuations around a deterministic

average flow.

In next two sub-sections we develop two nonlinear forms for the stochastic contribution

to the reactive production rates, one coming from irreversible thermodynamics cast in the

GENERIC formalism [62], and the other being a generalization of the more familiar form

associated with the chemical Langevin equation (CLE) [47, 57, 69].
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A. The Log-Mean Equation

Grmela and Ottinger [62] cast the phenomenological LMA (7) in the GENERIC formalism

and obtain a nonlinear form for the dissipative matrix, under the assumption of a quadratic

dissipative potential. Note that the entropy production rate can uniquely be written as

a quadratic function of the thermodynamic driving force only for a single reaction; the

resulting peculiar form of the mobility (dissipative) matrix (see Eq. (113) in [62]) involving

a logarithmic mean has recently been justified from a model reduction perspective [75]. Here

we assume that there is no cross-coupling between different reactions and thus associate

an independent stochastic production rate with each reaction. Coupling between distinct

reactions has been considered within a nonequilibrium thermodynamic framework only in

some very specific cases [76, 77] and a general formulation requires more detailed knowledge

about the coupling mechanism than is available in practice.

Following the general principles for including fluctuations 1 in the GENERIC formalism

[78], it is straightforward to write a Gaussian stochastic production rate assuming indepen-

dence among the different reaction channels,

Ω̃LM
s =

∑
r

νsr
√

2DLM
r � ZΩ

r (9)

where

DLM
r =

p

τrkBT

Âr
Ar

(10)

and where ZΩ
r are independent white-noise random scalar fields with covariance

〈ZΩ
r (r, t)ZΩ

r′(r
′, t′)〉 = δr,r′ δ(r− r′) δ(t− t′),

with each ZΩ
r driving the stochastic production rate of a single chemical reaction r. We

refer to this formulation for the stochastic chemistry as the “log-mean” form; the reasoning

behind this name will become evident when presented in Section II C for ideal mixtures. Note

that (9) uses the kinetic or Klimontovich interpretation [79, 80] of the stochastic integral,

formally denoted as a kinetic stochastic product with a � symbol in (9). The variance of the

stochastic forcing DLM
r can be seen to be positive because Â and A always have the same

sign [62]. Note that
∑

smsΩs =
∑

smsΩ̃
LM
s = 0, as required by mass conservation.

1 Fluctuations are not considered by Grmela and Ottinger [62], however, the “square root” of the mobility

matrix written in Eq. (113) in [62] is straightforward to write, and this leads to the log-mean equation

considered here.
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For the purposes of exposition it is useful to consider a homogeneous “well-mixed” sys-

tem of volume ∆V , which will correspond to a single hydrodynamic cell after spatial dis-

cretization of (1). The dynamics of the (intensive) number density ns = Ns/∆V , where

Ns = ∆V ρs/ms is the number of molecules of species s in the cell, is given by,

dns(t)

dt
=
∑
r

νsr

[
p

τrkBT
Âr +

√
2DLM

r

∆V
�WΩ

r

]
, (11)

which can also be written in Ito form as,

dns(t)

dt
=
∑
r

νsr

[
p

τrkBT
Âr +

√
2DLM

r

∆V
WΩ

r +
1

∆V

NS∑
s′=1

νs′r

(
∂DLM

r

∂ns′

)]
, (12)

whereWΩ
r (t) are independent scalar white noise processes with covariance 〈WΩ

r (t)WΩ
r′(t
′)〉 =

δr,r′δ(t − t′). We call this system of stochastic ordinary differential equations (SODEs) the

“log-mean” equation (LME).

The derivative in the last stochastic drift term in (12) is the directional derivative of DLM
r

along the reaction coordinate. Unlike the more familiar Ito or Stratonovich interpretations

of the noise, the kinetic form of the noise ensures that the corresponding Fokker-Planck

equation has the traditional form [81],

∂P (n, t)

∂t
=
∑
r

∑
s

∂

∂ns

{
νsrDLM

r

[
−ArP +

1

∆V

∑
s′

νs′r
∂P

∂ns′

]}
,

This ensures that the LME is in detailed balance with respect to the Einstein distribution

∼ S/(kBT ) for a closed system at thermodynamic equilibrium, where S is the total entropy of

the system [78]. We note that it is not possible to obtain the LME from the chemical master

equation (CME) with a systematic procedure; one must invoke some guiding principles about

the structure of coarse-grained Fokker-Planck equations to “derive” this form of the noise

[67, 68, 81].

B. The Chemical Langevin Equation

Since both A and Â are equal to zero at chemical equilibrium, near chemical equilibrium

we can linearize (10) to first order in the affinity A, and approximate the amplitude of the

stochastic production rate in terms of a sum over each forward and reverse reaction, that is,

Âr
Ar
≈ exp

(∑
s

ν+
srµ̂s

)
+ exp

(∑
s

ν−srµ̂s

)
=
∏
s

eν
+
srµ̂s +

∏
s

eν
−
srµ̂s . (13)
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Since this sum of products of exponentials is evidently positive, we can potentially use it

even far from chemical equilibrium, and write the stochastic production rate as,

Ω̃CL
s =

∑
r

νsr

(√
2DCL

r,+ZΩ
r,+ +

√
2DCL

r,−ZΩ
r,−

)
(14)

where 2

DCL
r,± =

1

2

(
p

τrkBT

)∏
s

eν
±
srµ̂s . (15)

Here ZΩ
r,+ are independent white-noise scalar random fields that give the stochastic contribu-

tion from the forward reaction, while ZΩ
r,− correspond to the reverse reactions; the forward

and reverse reactions are taken to be independent. In the next section the production rate

factors, DLM
r and DCL

r , are further simplified for the case of ideal gas mixtures.

The form (14) for the amplitude of the stochastic production rate is found in most work

on the subject [47, 59–61, 82]. For example, though not written in this form, eqn. (8f) in

Ref. [61] contains a sum of two exponential terms and is equivalent to (13) for the specific

reaction considered there 3. For a well-mixed homogeneous system of volume ∆V , the

number densities of molecules of the different species follow the system of SODEs,

dns(t)

dt
=
∑
r

νsr

[
p

τrkBT
Âr +

√
2DCL

r

∆V
WΩ

r

]
. (16)

The stochastic equation (16) is commonly referred to as the chemical Langevin equation

(CLE) following Gillespie [47], and can be obtained from the CME by an uncontrolled

truncation of the Kramers-Moyal expansion to second order. It is traditional to assume an

Ito interpretation of the noise in the CLE, even though no precise justification for this can be

made within the accuracy to which the CLE approximates the CME [69]. Mathematically,

the nonlinear CLE contains similar information to the central limit theorem (i.e., linearized

fluctuating hydrodynamics) corresponding to the CME in the limit of weak noise (large

number of reactant molecules).

As seen from (13), the two stochastic differential equations for the number densities, the

LME using the kinetic noise (12) and the CLE using the Ito noise (16), are equivalent near

chemical equilibrium. They are, however, different far from chemical equilibrium, as we

2 Note that the two terms in (14) can be combined together to give a single white-noise process with

amplitude DCL
r = DCL

r,+ +DCL
r,−; this leaves the covariance of the stochastic forcing unchanged.

3 As the authors note in a later publication [61], the sign in Eq. (88) in Ref. [59] is wrong and should

be a plus rather than a minus. With this change that equation is equivalent to (14) evaluated at the

deterministic solution, in the spirit of linearized fluctuating hydrodynamics.
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illustrate in more detail in Section IV A. Notably, the forward and reverse reactions are

treated together in the LME, consistent with the fact that, due to microscopic reversibility,

there is only one independent rate coefficient for each reaction. [57] The ratio of the forward

and reverse reaction rates is related to the equilibrium reaction constant, which is a thermo-

dynamic and not a kinetic quantity. In fact, the LME is closely-related to the notion of the

existence of a state of thermodynamic equilibrium in which each pair of forward and reverse

reactions are in detailed balance with each other; one cannot write an LME for a system

with irreversible reactions, which fundamentally violate detailed balance.

By contrast, the forward and reverse reactions are treated completely independently in the

CLE and there is no difficulty in writing a CLE for a system with irreversible reactions. The

CLE is evidently inconsistent with the notion of detailed balance and is, in fact, inconsistent

with equilibrium thermodynamics. Although written in a different form, Keizer’s (4.8.37) is

the CLE, and Keizer’s (4.8.36) is the LME [57]; Keizer argues that the CLE is the correct

equation and concludes: “Although the theoretical description of nonequilibrium ensembles

would be greatly simplified if the phenomenological choice [LME] were correct, this appears

not to be the case.” We will compare and contrast these two equations on some specific

examples in Section IV A.

C. The Law of Mass Action and Ideal Gas Mixtures

In the formulation of hydrodynamic transport one normally works with the specific chem-

ical potential, which has the general form, [83]

µs(p, T,X) =
kBT

ms

(lnXs + ln γs) + µos(p, T ),

where µos is the chemical potential at a reference state, Xs = Ns/
∑

s′ Ns′ is the mole fraction,

and γs(p, T,X) is the activity coefficient of species s. For chemistry it is more convenient

to work with a dimensionless chemical potential per particle,

µ̂s =
msµs
kBT

= ln(Xsγs) + µ̂os,

where µ̂os = (msµ
o
s)/(kBT ). Note that Xsγs is the activity (i.e., effective concentration) and

for an ideal mixture, γs = 1. [84] This gives

exp
(
ν±srµ̂s

)
= exp

(
ν±srµ̂

o
s

)
(Xsγs)

ν±sr ,
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which leads to a generalized law-of-mass action (LMA) of the form

Ωs =
∑
r

νsr
p

τrkBT
Âr =

∑
r

νsr

(
κ+
r

∏
s′

(Xs′γs′)
ν+
s′r − κ−r

∏
s′

(Xs′γs′)
ν−
s′r

)
, (17)

where κ±r (T, p,X) are the more familiar forward/reverse reaction rates (per unit time and

per unit volume). Since there is only one independent timescale parameter, τr, the forward

and reverse rates are not independent and the LMA gives the ratio to be the equilibrium

constant,

Kr(p, T ) =
κ+
r

κ−r
=

[∏
s (Xsγs)

ν−kr∏
s (Xsγs)

ν+kr

]
eq

= exp

(
−
∑
s

νsrµ̂
o
s

)
, (18)

which is a purely thermodynamic quantity (closely related to the dimensionless reference

Gibbs energy for the reaction at a unit reference pressure) that can be calculated from pure

component data [82, 85]. Note that in chemistry texts the equilibrium constant is typically

defined in terms of concentrations rather than activities as we have done here.

For ideal gas mixtures we can further simplify the generalized LMA (17) to the more

familiar form using number densities instead of mole fractions. From classical statistical

mechanics, for an ideal gas mixture we can write4

µ̂s = lnns + ln

(
Λ3
s(T )

js(T )

)
, (19)

where Λs = h/
√

2πmskBT is the thermal wavelength of a structure-less particle and j(T ) is

the partition function for the internal degrees of freedom. [86] In general j(T ) is a compli-

cated function depending on the quantized energy levels of a molecule but in the classical

approximation j(T ) = (T/To)
1
2
z where z is the number of classical internal degrees of free-

dom and To is a reference temperature.

For ideal gas mixtures the chemical production rate (17) can be written in the familiar

power-law form,

Ωs =
∑
r

νsr

(
k+
r

∏
s′

n
ν+
s′r
s′ − k

−
r

∏
s′

n
ν−
s′r
s′

)
, (20)

where k±r are the forward/reverse reaction rates for the LMA formulated in terms of number

density instead of activity. For uni-molecular reactions (e.g., M1 → . . .) the “decay time” for

a particle is usually assumed to be constant, in which case the corresponding reaction rate

4 This is in the classical regime, that is, when the molecules’ mean spacing is much larger than their de

Broglie wavelength.
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(e.g., k+
r ) is a constant. For bi-molecular reactions (e.g., M1 + M2 → . . .) the production

rate is usually assumed to be proportional to the collision frequency times an Arrhenius

factor, in which case the corresponding reaction rate is only a function of temperature. [87]

For the stochastic production rate in an ideal gas mixture, using,

Ar =
∑
s

ν+
srµ̂s −

∑
s

ν−srµ̂s = ln
exp (

∑
s ν

+
srµ̂s)

exp (
∑

s ν
−
srµ̂s)

= ln
k+
r

∏
s n

ν+sr
s

k−r
∏

s n
ν−sr
s

.

gives

DLM
r =

k+
r

∏
s n

ν+sr
s − k−r

∏
s n

ν−sr
s

ln
(
k+
r

∏
s n

ν+sr
s

)
− ln

(
k−r
∏

s n
ν−sr
s

) = logmean

{
k+
r

∏
s

nν
+
sr
s , k−r

∏
s

nν
−
sr
s

}
(21)

DCL
r =

1

2

[
k+
r

∏
s

nν
+
sr
s + k−r

∏
s

nν
−
sr
s

]
= arthmean

{
k+
r

∏
s

nν
+
sr
s , k−r

∏
s

nν
−
sr
s

}
. (22)

where logmean and arthmean are the logarithmic and arithmetic mean, respectively. Note

thatDLM
r is zero if either reaction rate equals zero whileDCL

r is non-zero if either reaction rate

is non-zero. The logarithmic mean form of the noise in the ideal mixture case has appeared,

phenomenologically, in several early papers [67, 68] and in more recent work [75, 88, 89] by

other authors.

III. NUMERICAL SCHEME

The numerical integration of (1)-(3) is based on a method of lines approach in which we

discretize the equations in space and then use an SODE integration algorithm to advance the

solution using the basic overall approach described in [42]. The spatial discretization uses a

finite volume representation with cell volume ∆V , where Un
i,j,k denotes the average value of

U = (ρs, ρv, ρE) in cell-(i, j, k) at time step n. To ensure that the algorithm satisfies discrete

fluctuation-dissipation balance, the spatial discretizations for the hydrodynamic fluxes are

done using centered discretizations; see [40] and [42] for details.

Discretization of the system in space results in a system of SODEs driven by a collection

of independent white-noise processes W(t) that represent a spatial discretization of the

random Gaussian fields Z(r, t) used to construct the noise. After temporal discretization

these white noise processes are represented by a collection of i.i.d. standard normal variates

Z, which can be thought of as a spatio-temporal discretization of Z; the discretization is

reflected in the presence of a prefactor 1/
√

∆V∆t in the expressions for Ω̃ given below [90].
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For temporal integration we use the low-storage third-order Runge-Kutta (RK3) scheme

previously used to solve the single and two-component FNS equations [40], using the weight-

ing of the stochastic forcing proposed by Delong et al. [90]. With this choice of weights,

the temporal integration is weakly second-order accurate for additive noise (e.g., the lin-

earized equations of fluctuating hydrodynamics [91]). As discussed at length in Ref. [91]

the hydrodynamic stochastic fluxes should be considered as additive noise in a linearized

approximation.

The implementation of the methodology supports three boundary conditions in addition

to periodicity. The first is a specular, adiabatic wall which is impermeable to momentum,

mass or heat transport (i.e., all fluxes are zero at the wall). A second type of boundary

condition is a no slip, reservoir wall at which the normal velocity vanishes (i.e., the total

mass flux at the boundary vanishes) and the other velocity components, mole fractions and

temperature satisfy inhomogeneous Dirichlet boundary conditions; this mimics a permeable

membrane connected to a reservoir on the other side of the boundary. The third boundary

condition is a variant of the no slip condition for which the wall is impermeable to mass

but conducts heat. When a Dirichlet condition is specified for a given quantity, the corre-

sponding diffusive flux is computed as a difference of the cell-center value and the value on

the boundary. In such cases the corresponding stochastic flux is multiplied by
√

2 to ensure

discrete fluctuation-dissipation balance, as explained in detail [43, 92].

Because the noise arising from the chemical reactions is multiplicative special care must

be taken to capture the correct stochastic drift terms arising from the kinetic interpretation

of the noise in the LME. We have chosen to write the equations in Ito form, which leads to

an additional stochastic drift term in the LME (12). To integrate the Ito form in time, we

evaluate the amplitude of the noise at the beginning of the time step and reuse the same

random increments in all three stages of the RK3 scheme. The stochastic drift term arising

in the LME is treated as a deterministic term but is also only evaluated at the beginning

of the time step. The resulting scheme is only first-order weakly accurate. It is possible to

construct second-order weak integrators by using the special one-dimensional nature (i.e.,

there is only a single reaction coordinate for each reaction even if there are many species

involved) of the chemical noise [93]. However, in our simulations the time step is typically

limited by stability considerations for advective and diffusive hydrodynamic processes, and

therefore chemistry is accurately resolved even by a first-order scheme. Alternative temporal
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integration strategies will be discussed in the Conclusions.

The chemical Langevin form of the noise in (16) is discretized as,

(Ω̃CL
s )ni,j,k =

∑
r

νsr

√
2(DCL

r )ni,j,k
∆V∆t

(ZΩ
r )ni,j,k, s = 1, . . . , NS, (23)

where
(
ZΩ
r

)
i,j,k

are zero-mean normal Gaussian variates generated independently in each

cell at the beginning of each time step, 〈(ZΩ
r )ni,j,k(Z

Ω
r′)

n′

i′,j′,k′〉 = δi,i′δj,j′δk,k′δn,n′δr,r′ . Note that

the two terms in (14) have been combined into a single white-noise process with amplitude

DCL
r = DCL

r,+ + DCL
r,−. As discussed above, the LME noise (9) leads to an Ito correction in

(12),

(Ω̃LM
s )ni,j,k =

NR∑
r=1

νsr

√2(DLM
r )ni,j,k

∆V∆t
(ZΩ

r )ni,j,k +
1

∆V

NS∑
s′=1

νs′r

(
∂DLM

r

∂ns′

) .
The directional derivative of DLM

r in the last term can be evaluated analytically, or, for

simplicity of implementation, it can be efficiently approximated numerically using a finite

difference along the reaction coordinate.

IV. NUMERICAL RESULTS

In this section we describe several test problems that demonstrate the capabilities of the

numerical methodology. We consider two reaction systems, the first being simple dimeriza-

tion,

R1 : A+ A� A2 (24)

where M = (A,A2), that is, species 1 is the monomer and species 2 is the dimer. In

Section IV A 1 we investigate simple dimerization in a homogeneous system; in Section IV B

we investigate the “giant fluctuation” phenomenon in the presence of dimerizaton for a

system with an applied concentration gradient.

The second model we consider is based on the Gray-Scott (GS) model [94, 95], which is

known to exhibit a rich morphology of stationary and time-dependent patterns [96]. This
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model, as formulated by Pearson [96], consists of the reactions,

R1 : U + 2V → 3V

R2 : V → S (25)

R3 : U � Uf

R4 : V → Vf

where the concentrations of the “feed species”, Uf and Vf , are held fixed and species S is

inert. Since elementary reactions are rarely trimolecular in nature, we consider a variation

of the GS model developed by Baras et al. [70, 71]. The Baras-Pearson-Mansour (BPM)

model5 is,

R1 : U +W � V +W

R2 : V + V � W + S

R3 : V � S (26)

R4 : U � Uf

R5 : V � Vf

with M = (U, V,W, S, Uf , Vf ). This model was developed as a more realistic variant of

the Gray-Scott model suitable for particle simulations of dilute gases.6 Note that the first

and third reactions are irreversible in the original BPM model, which is not consistent with

detailed balance. The BPM model has not been studied as extensively as the GS model but

its dynamics are expected to be qualitatively similar. Note that the BPM model replaces the

trimolecular reaction in the GS model with a pair of bimolecular reactions and introduces

W as an intermediary species. In the standard BPM model [70] the number densities of

S, Uf , and Vf are held fixed so, being an open system, total mass is not conserved and

detailed balance is not satisfied. [57] In Section IV A 2 we investigate this standard BPM

model in a homogeneous “well-mixed” system; in Section IV C we simulate a two dimensional

domain with full hydrodynamic transport with species S, Uf , and Vf held fixed only at the

boundaries.

5 Also known as the OLR model.
6 To implement the BPM model in a molecular simulation with binary collisions Baras et al. modify the

model by making all the reactions bimolecular and by introducing an “auxiliary” species, A.
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A. Homogeneous Systems

We first consider homogeneous “well-mixed” 7 systems of volume ∆V with only chemistry

(i.e., no hydrodynamics). In this section we compare the results obtained using the log-mean

equation (LME) form, (21), and the chemical Langevin equation (CLE) form, (22), with

results from CME simulations performed using the Stochastic Simulation Algorithm (SSA),

also known as the Gillespie algorithm. [19] The chemical master equation (CME) is widely

accepted as an accurate model for well-mixed chemical systems and SSA is a popular scheme

for simulating the stochastic process described by the CME. [20] As we will see, the two

forms for the Langevin noise have their advantages and disadvantages and both forms are

only approximations of the CME with limited ranges of validity.

1. Dimerization Reaction

We start by considering the dimerization reaction (24) in a closed system for which the

deterministic production rate for species 1 (monomers) is

Ω1 = −2(k+n2
1 − k−n2),

and by mass conservation, for dimers Ω2 = −1
2
Ω1 since m2 = 2m1. The constraint of mass

conservation can also be expressed as n1 + 2n2 = n0, where n0 is the initial number density

of A particles (in either monomer or dimer form). We may then write,

Ω1 = −2k+n2
1 + k−(n0 − n1)

and limit our attention to the monomer species. For simplicity we take the ratio of the rate

constants to be k+/k− = 1/n0 so the equilibrium mass fraction (Y1)eq = 1
2

(i.e., Ω1 = 0 for

Y1 = 1
2
).

The log-mean stochastic production rate for n1 is

Ω̃1 = −2

√
2DLM

∆V
�WΩ with DLM =

k+n2
1 − k−n2

ln (k+n2
1)− ln (k−n2)

.

7 The precise mathematical definition of a “well-mixed” system is delicate and will not be discussed here

at length. Roughly speaking, it means that diffusion is sufficiently fast compared to reactions; see [73] for

a theorem on the limit of infinite diffusion.
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From the corresponding Fokker-Planck equation (FPE) (II A) one finds the LME is in de-

tailed balance with respect to the equilibrium distribution

P LM
eq (Y1) = Z−1 exp

{
n0∆V

[
1

2
ln (1− Y1) (Y1 − 1)− Y1 ln (Y1)− 1

2
Y1 (ln (2)− 1)

]}
,

(27)

where Z is a normalization constant. This Einstein distribution P LM
eq (Y1) ∼ exp(S(Y1)/kB)

is in agreement with the the correct thermodynamic entropy S in the limit of Sterling’s

approximation, as we demonstrate in Appendix B.

For the chemical Langevin equation the stochastic production rate for n1 is

Ω̃1 = −2

√
2DCL

∆V
WΩ with DCL =

1

2

(
k+n2

1 + k−n2

)
.

The equilibrium distribution can also be found from the stationary solution of the FPE

corresponding to the CLE, which we do not write here for brevity.8 We do note that, for

this example, PCL
eq (Y1) is quite close to a Gaussian. We further observe that, unlike the

LME, no thermodynamic interpretation can be given to ln PCL
eq . In fact, the tails of PCL

eq are

quite different from those of P LM
eq and, being nearly Gaussian, the former includes unphysical

values of the concentration (i.e., Y1 is not constrained between 0 and 1).

Figure 1 shows numerical results for the equilibrium distribution of the number of

monomers N1 = n1∆V = ρY1∆V/m1. At thermal equilibrium the simulation results using

the log-mean equation (LME) form for the noise are in excellent agreement with equilibrium

statistical mechanics (see Appendix B) and with CME/SSA simulation results. Other work

has also shown that, when detailed balance is obeyed, the LME correctly reproduces the

equilibrium transition rates for rare jumps between stable minima in bistable systems [68].

On the other hand, the chemical Langevin equation (CLE) result has the noticeable flaw

that, being a Gaussian, the distribution extends to unphysical negative values of N1.

However, the LME does not compare favorably with the numerical solution of the CME

for time-dependent situations, such as when a system is relaxing toward equilibrium. To

illustrate this, we simulate an ensemble of systems prepared with an initial condition far from

equilibrium, specifically with Y1(t = 0) ≈ 1, and measure the time-dependent probability

distribution P (Y1, t) as the system relaxes toward chemical equilibrium ((Y1)eq = 1
2
). As

expected, for the ensemble mean value of the number density n̄1(t) = 〈n1(t)〉, we find close

8 In the literature this equation is called the CFPE (chemical FPE), see (4) in [65].
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FIG. 1. Empirical histograms of the probability distribution P (N1) for the number of monomers N1

obtained from the log-mean equation (left) and the chemical Langevin equation (right), compared

to results from the CME (obtained using SSA). The theoretical solution of the corresponding

FPE is shown with a solid red line; the numerical results from SSA are the circles. The Einstein

distributions employing the Gaussian approximation and the second-order Stirling approximation

(B4) to the true entropy (B1) are also shown. Note that 〈N1〉 ≈ 16, which is rather small and thus

tests the limits of applicability of a Langevin (non-discrete or non-integer) description.

agreement among LME, CLE, and CME results (not shown), even when fluctuations are

quite large. However, if we consider the standard deviation of the number of monomers,

the left panel in Fig. 2 clearly demonstrates that the CLE is in much better agreement with

the CME (as shown by the SSA results) for describing relaxation toward equilibrium. Also

shown on this graph is the theoretical solution for the standard deviation obtained by first

linearizing the CLE 9 around the solution of the deterministic law of mass action (which

is the law of large numbers corresponding to the CME [69]), and then writing a system of

ODEs for the mean and variance of n1(t). Specifically, we have that dn̄1(t)/dt = Ω1 and,

using Ito’s formula, we get the central limit theorem corresponding to the CME [69],

dC1(t)

dt
= −2C1(t)

dΩ1 (n̄1(t))

dn1

+
8

∆V
DCL (n̄1(t)) ,

where C1(t) = 〈(n1(t)− n̄1(t))2〉.
9 The linearized CLE is known as the second-order van Kampen expansion [97] in the physics literature

and has the same formal order of accuracy as the CLE [69] but is much simpler to solve analytically due

to its linearity. Analysis in Ref. [65] suggests that the nonlinear CLE may be more accurate than the

linearized CLE for large noise but we are not aware of rigorous mathematical estimates.
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FIG. 2. Relaxation toward equilibrium in a closed cell initially containing 100 monomers and 4

dimers and relaxing toward the equilibrium state of 〈N1〉 ≈ 54 monomers. Rates are k− = 0.3 and

k+ = 2.78 · 10−4; time step is ∆t = 0.005. (Left) Time evolution of the standard deviation of the

number of monomers; theory curves are obtained by solving (IV A 1). (Right) Histogram of the

probability density P (N1, t) for the number of monomers at an early time t = 0.05.

The agreement between CLE and CME in the left panel of Fig. 2 is not surprising since it

is well-known that the central limit theorem for the CME is a linear Langevin equation with

the noise covariance given by the CLE form rather than the LME form. [69, 98] The agree-

ment between the CLE and SSA results is less impressive when we look more closely at the

probability distribution during the relaxation toward equilibrium. The right panel of Fig. 2

shows histograms of the probability distribution for the monomers, P (N1, t), at an early

time in the relaxation. This distribution is not close to Gaussian for the CME/SSA solution

and we see that, in this regard, the CLE result is no better than the LME result. In fact, for

the probability distribution of the dimers (not shown) the CLE results have the unphysical

feature of non-zero probability for negative values of dimer concentration. Of course, one can

argue that the number of molecules in the system is too small for a Langevin approximation

to apply. If the fluctuations are decreased, the probability distribution P (N1, t) will become

closer to Gaussian and then the CLE will provide a better description; note however that

the tails of the distribution will always be incorrect for the CLE, even at thermodynamic

equilibrium.
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Species S Uf Vf

nr (fixed) 7.0 · 102 5 · 1011 5.65 · 1010

- R1 R2 R3 R4 R5

k+ 2 · 10−3 10−3 0.0200936 0.28 0.28

k− 2 · 10−9 2.198 · 10−4 2.009 · 10−8 2.8 · 10−10 2.8 · 10−10

TABLE I. Table of parameters for the BPM model in a well-mixed system (see Figure 3). The

system volume ∆V = 4 and the time step ∆t = 1.0 (reducing the time step size further did not

change the results significantly).

.

2. Bistable BPM Model

As a less trivial homogeneous example, we consider the BPM model (26) for an open

system held at a non-equilibrium steady state for which the probability distribution function

is bimodal. [71] For the chemistry-only study in this section, the number of molecules of

species 1, 2, and 3 (U , V , and W ) are allowed to vary while the number of molecules of all

other species are fixed. The relevant parameters are given in Table I. Note that a similar

system (with all reactions being bimolecular) was studied by Baras et al., who found good

agreement between SSA and molecular simulations using the Direct Simulation Monte Carlo

(DSMC) algorithm [71]. Baras et al. also examined the accuracy of the CLE linearized

around the solution of the deterministic equations, and, not surprisingly, found it to be a

very poor approximation of the CME for the parameters they chose. Gillespie [47] suggests

that “A repetition of the study of Baras and co-workers using the Langevin equation [CLE]

instead of the [linearized CLE] should show the chemical Langevin equation in a fairer light.”

This section presents such a study using both the CLE and the LME. The parameters were

selected such that the number of particles is large (roughly O(102 − 103) for each species)

but not so plentiful as to prevent the SSA simulation from accurately sampling the bimodal

distribution in a reasonable amount of computation time.

A phase-space picture of a typical trajectory is shown in the left panel of Fig. 3. The tra-

jectory moves between two basins centered around the two stable deterministic steady states,

which are labeled state A (corresponding to N1 ≈ 1740, N2 ≈ 448, N3 ≈ 328 molecules) and
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FIG. 3. Numerical results for the BPM modelin a well-mixed system (see Table I). (Left) A phase

space picture of a typical trajectory from SSA as it visits the two basins around the deterministic

steady states (labeled A and B in the figure). The insert shows the trajectory in the collective

coordinate, x(t), based on assigning each point to either state A (red) or state B (green) based on

the last state visited by the trajectory (see text). (Right) Histogram of the steady-state probability

distribution P (x) comparing SSA, LME, and CLE simulation results. Measurements were skipped

for the first 5 · 105 steps to relax the initial transient and then statistics were collected for 1 · 108

steps.

state B (corresponds to N1 ≈ 1224, N2 ≈ 936, N3 ≈ 1424 molecules). Based on this picture,

we chose to define a collective coordinate x(t) which is the projection of the state (n1, n2, n3)

onto the line connecting the two stable points (red line in the figure). This simple linear

collective coordinate has the property that x = 0 at state A and x = 1 at state B; note that

x(t) is not bounded between zero and one. The insert in Fig. 3 (left panel) shows x(t) for a

typical trajectory as the system moves between the basins.

The right panel in Fig. 3 shows the steady-state probability distribution P (x) for the

collective coordinate x, clearly illustrating its bimodal form; similar results are found for the

probability distributions for n1, n2, and n3. The results for the LME and CLE Langevin

approximations are qualitatively similar to those from the CME/SSA but quantitatively

different; the LME result is in better agreement with the CME for this specific example.

To also examine the long-time dynamics of the well-mixed bistable BPM system, we assign

each (discrete) point in time to either state A or state B (see insert in left panel of Fig. 3).
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State A Mean Variance State B Mean Variance

SSA 1.13·105 1.53·1010 SSA 2.86·105 8.74·1010

LME 3.23·105 9.03·1010 LME 8.45·105 1.91·1011

CLE 1.38·105 1.70·1010 CLE 5.01·105 7.91·1010

TABLE II. Numerical results for the mean and variance of the time spent in state B before transiting

to state A, and vice versa, for the three implementations of stochastic chemistry.

The assignment is performed by defining two sets A = {x < 0.3} and B = {x > 0.6} and

assigning each point in the trajectory to the last set that was visited. The distribution of

waiting times spent in the two states before transitioning to another state is related to the

transition rate, and the ratio of the average waiting times gives the ratio of the probabilities

to be found in each of the two states. For large ∆V (weak noise), the transitions are rare

events and the distribution of waiting times should be approximately exponential (recall

that for an exponential distribution the variance is the square of the mean). Numerical

results for the mean and variance of the time spent in state B before transiting to state A,

and vice versa, are shown in Table II.

Our results indicate that for the BPM model the CLE and LME provide a reasonably good

qualitative description of the long-time dynamics and rare-event statistics for the parameters

studied here. However, both approximations are in general uncontrolled and the quantitative

match between the CME and either CLE or LME will not improve even if the cell volume

increases and the fluctuations decrease in amplitude. In Ref. [68] it is observed that the

LME correctly reproduces the very long-time dynamics (more precisely, the large deviation

theory) of the CME for the bistable Schlogl model. This conclusion is, however, specific to

this simple one-dimensional model because the system obeys detailed balance even though

it is not in thermodynamic equilibrium; the BPM model studied here is not in detailed

balance and there is no a priori reason to expect the LME to be more accurate than the

CLE. The fact that the CLE is not able to describe rare events is well-known, see for example

the discussion by Gillespie in [99] and after Eq. (9b) (which is the CLE) in [66], or recent

numerical studies of noise-induced multistability [100]. It can, in fact, easily be proven that

this problem is shared by all diffusion process (SODE) approximations of the CME 10, and

10 While Langevin approximations cannot approximate atypical statistics of the CME, the CLE is likely

appropriate for describing the typical behavior of the CME [65].
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fundamentally stems from the difference between the rare-event statistics of Gaussian and

Poisson noise 11. A promising alternative is to use tau-leaping to approximately integrate

the CME in time [66] since it uses Poisson noise, and thus has the potential to correctly

approximate the long-time behavior of the CME. This point is discussed further in the

Conclusions.

B. Giant Fluctuations

We now consider a system for which concentration fluctuations are affected by both chem-

istry and hydrodynamics in an interesting fashion. In the absence of chemistry a gradient of

concentration induces a long-ranged correlation of concentration fluctuations [35, 102, 103].

These correlations are closely tied to the experimentally observed “giant fluctuation” phe-

nomenon [48–50]. In an isothermal, nonreacting binary mixture the static structure factor

for fluctuations in the mass fraction of the first species contains two contributions,

S (k) =
〈

(δ̂Y1)(δ̂Y1)?
〉

= Seq + Sneq,

where “hat” denotes a Fourier component; the equilibrium part is

Seq =
m1

ρ
(Y1)eq

(
1− (Y1)2

eq

)
, (28)

The non-equilibrium enhancement of the static structure factor due to a concentration gra-

dient is Sneq (k) ∼ (∇Y1)2 /k4, where the wavevector k is perpendicular to the imposed

concentration gradient.

The nature of these long-ranged correlations is modified in the presence of chemical reac-

tions, as predicted by linearized fluctuating hydrodynamics [60, 61, 104]. Some preliminary

numerical studies of fluctuations in the presence of chemistry have been done in Ref. [105]

using an RDME-based description. However, these simulations are for a simpler isomeriza-

tion A � B in one dimension and, furthermore, they are concerned with reaction-diffusion

only and do not account for the hydrodynamic velocity fluctuations that are responsible for

the giant concentration fluctuation phenomenon.

We consider here the dimerization reaction (24) in a spatially inhomogeneous system.

A rather detailed linearized fluctuating hydrodynamic theory for this example has been

11 To see this contrast the quadratic Hamiltonian in (1.4) in [101], which applies to SODEs, and the expo-

nential Hamiltonian in (1.6) in [101], which applies to master equations.
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developed by Bedeaux et al. in [61], for a system in which a concentration gradient is

imposed via a temperature gradient through the Soret effect. However, this analysis assumes

a liquid mixture (large Schmidt and Lewis numbers) and thus does not apply to gas mixtures.

Therefore, a simplified theoretical analysis of giant fluctuations in binary gas mixtures in

the presence of an imposed constant concentration gradient and reactions is developed in

Appendix C.

Our simplified theory decouples the temperature equation and uses a concentration equa-

tion (specifically the mass fraction of the first species) coupled to an incompressible fluctuat-

ing velocity equation. For the case of a liquid mixture with very large Schmidt number, which

is the case considered in [61], the calculation predicts that the nonequilibrium enhancement

of the static structure factor of concentration fluctuations for the monomer species is (see

eqn. (C1))

Sneq (k) =
kBT (∇Y1)2

ηDk4

(
1 + (dk)−2)−1

, (29)

where D is the diffusion coefficient and η is the viscosity. The last term on the r.h.s. depends

on the penetration depth d [106],

d =

√
D

3k−
.

We see that for large wavenumbers (k � 1/d) the spectrum is ∼ k−4, as in the absence of

the chemical reaction. However for small wavenumbers (k � 1/d) there is a transition to a

k−2 spectrum. For gas mixtures, however, a more detailed model is required that takes into

account the finite value of the Schmidt number. The result of this calculation is eqn. (C2),

which predicts a further transition to a flat (constant) spectrum at small wavenumbers, with

a finite Sneq(k = 0) = (kBT ) (∇Y1)2 /(9ρ(k−)2). The calculation in Appendix C indicates

that this effect is important even in liquids and the more refined theory ought to be used if

quantitative agreement with experiments or simulations is sought.

We performed a series of simulations to investigate these predictions using the full hy-

drodynamic equations plus chemistry. It is important to note that even though we use the

full nonlinear equations, nonlinearities in the fluctuations are negligible for the simulations

reported here 12. In fact, the noise is very weak (since the domain is quite thick in the z

direction) and the numerical method is effectively performing a computational linearization

of the fluctuating equations around the solution of the (nonlinear) deterministic equations

12 The nonlinearity of the deterministic (macroscopic) equations is fully taken into account
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[91]; this is simular to what is done analytically in Refs. [60, 61] but does not require any ap-

proximations. In the small Gaussian noise regime the linearized CLE equation applies, and

therefore in these simulations we use the CLE form for the stochastic chemical production

rate in agreement with the theory in [60, 61]. Identical results (to within statistical errors)

are obtained by using the LME form of the noise (not shown); this is not unexpected since

the important noise here is the stochastic momentum tensor driving the velocity fluctua-

tions; the stochastic mass flux and production rates only affect the reaction-diffusion part of

the spectrum, which is much smaller than the nonequilibrium enhancement we study here.

Here we assume that the traditional number-density based LMA (20) holds with constant

rates k+ and k−. This requires that the time scale for the reaction is proportional to the

number density, that is, τ ∼ p/kBT = n. From (18) and (19), for the dimerization of an

ideal gas the ratio of these rates is,

k+

k−
=

(Λ3
1)2

Λ3
2

j2

(j1)2
= 23/2Λ3

1

j2

(j1)2

which is a complicated function that depends on the form of the internal degrees of excitation.

These details determine the number fraction (X1)eq or, equivalently, the mass fraction (Y1)eq

at chemical equilibrium; here we set the ratio of the forward and reverse rates to ensure

(Y1)eq = 1/2, assuming that Λ1, j1 and j2 are consistent with this choice. Since the reaction

here changes the number density and thus the pressure, the reaction is strongly coupled

to the momentum and energy transport equations. In order to minimize this coupling, we

adjust the number of internal degrees of freedom of the dimer particles. Specifically, we set

the heat capacities to cp,1 = 5
2
kB/m1 (corresponding to three translational and zero internal

degrees of freedom), cp,2 = 5kB/m2 (corresponding to three translational and five internal

degrees of freedom). This choice ensures that cp of the mixture is independent of composition

so that at constant pressure the reaction is isothermal.

The fluid was taken to be a dilute binary mixture of hard-sphere gases, using kinetic

theory formulae for the transport coefficients [39]. In CGS units, the species diameters are

σ1 = 2.58 · 10−8 and σ2 = 3.23 · 10−8, and m1 = 6.64 · 10−23. At equilibrium the density

ρeq = 1.78 · 10−3, the temperature Teq = 300, and the concentration (Y1)eq = 0.5. For these

parameters, at the equilibrium conditions the mass diffusion coefficient is D = 0.2698 while

the momentum diffusion coefficient (kinematic viscosity) is ν = 0.2374. The ratio of the

reverse and forward reaction rates is fixed at k−/k+ = ρ/m1 = 2.67985 · 1019. We vary the
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penetration depth d by changing the value of the reaction rates.

The simulations used a 1282 grid and time step size ∆t = 2.5 · 10−8, grid spacing ∆x =

∆y = 10−3, and thickness in the z direction of ∆z = 10−3. The first 6 · 104 time steps

were skipped and then statistics collected for 2 · 106 time steps. A steady concentration

gradient was imposed by using Dirichlet boundary conditions at top and bottom boundaries

(y = L and y = 0). Specifically, we take Y1 (y = 0, t) = 0.3 and Y1 (y = Ly, t) = 0.7, with

temperature fixed at T = 300 and no-slip boundary conditions for the velocity. Periodic

boundary conditions were used in the other direction. Concentration profiles for various

values of penetration depth, d, are shown in Fig. 4. As expected, when the chemistry is

slow (d � L) the concentration profile is nearly linear; when the chemistry is fast the

concentration is nearly constant (at its chemical equilibrium value of (Y1)eq = 1/2) except

near the boundaries. Note that we set the thermal diffusion ratio to zero (i.e., no Soret

effect) so that the system is isothermal and the simple theory presented in Appendix C

applies.

For comparison, we also performed simulations in which we turn off all hydrodynamics

except Fickian diffusion, giving us a reference reaction-diffusion structure factor Srd(k). For

the case of a binary mixture [39] with k−/k+ = ρ/m1, the reaction-diffusion CLE reduces to

∂

∂t
(Y1) = ∇ · (D∇Y1) + k−

(
−2Y 2

1 + (1− Y1)
)

(30)

+ ∇ ·
[√

2D

n0

Y1(1− Y 2
1 ) ZF

]
−
√

2k−

n0

(2Y 2
1 + (1− Y1)) ZΩ, (31)

where n0 = ρ1/m1 + 2ρ2/m2 is the total number density of A particles contained in both

monomers and dimers, which is spatially constant in this reaction-diffusion approximation. It

is important to note that the reaction-diffusion model (31) is thermodynamically inconsistent

because it ignores the coupling of the chemistry to the energy and momentum transport. It

is well-known that adding chemistry should not change the fluctuations at thermodynamic

equilibrium [60], and this is indeed the case for the complete set of hydrodynamic equations

that we study in this work. By contrast, for the reaction-diffusion (31) the equilibrium

structure factor for (Y1)eq = 1/2 is given by

S(rd)
eq =

3m1

8ρ

8/9 + k2d2

1 + k2d2
, (32)

which only approaches the thermodynamically correct answer (29) for kd � 1. Note that

the inconsistency between full hydrodynamics and reaction-diffusion is not evident in Eqs.
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FIG. 4. Average concentration profile Y1(y) at steady state for various values of penetration

depth, d. Lines are from simulations using the full hydrodynamic equations; symbols are for

reaction-diffusion only.

(27a,28) in [60], because the authors of that work “neglect the dependence of the specific

Gibbs energy difference on pressure.” This inconsistency is not of any importance in our

study because we only use the reaction-diffusion simulations to obtain a baseline to subtract

from the full hydrodynamic runs at large wavenumbers; at small wavenumbers the nonequi-

librium enhancement is many orders of magnitude larger than the difference between (29)

and (32).

The reaction-diffusion runs are not limited by the Courant condition so we increased the

time step to ∆t = 2.5 · 10−7; a total of 6 · 104 steps were skipped initially and then statistics

were collected for 3 ·106 steps. As seen in Fig. 4 the average concentration profiles are nearly

the same whether the simulations used the full hydrodynamic equations or simply species

diffusion. For the structure factor, however, we find that the reaction-diffusion simulations

do not reproduce the giant fluctuation result (29), rather, they follow (32), which does not

show a power-law enhancement, as seen in the top panel of Fig. 5. This is expected since
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the giant fluctuation effect arises from the coupling of concentration fluctuations with the

velocity fluctuations.

Because the equilibrium structure factor (28) is derived assuming a uniform bulk state,

which is not actually the case here, we define Sneq(k) = S(k) − Srd(k) as a measure of the

“giant” nonequilibrium fluctuations coming from the coupling with the velocity equation.

Results for Sneq(k) for several penetration depths are shown in the bottom panel of Fig. 5,

comparing simulation results with the simple theory, eqn. (C2). Since chemistry should have

minimal effects for large k according to the theory, we compute an effective concentration

gradient by approximately matching the tail of the numerical result to the tail of the theory.

We see that the theory correctly reproduces the qualitative trends, namely, that the giant

fluctuations level off to a constant value at a wavenumber of order d−1. However, except for

the case of no reaction (d → ∞), 13 the theory is not in quantitative agreement with the

simulations. To confirm that the issue is not under-resolution of the penetration depth by the

grid, we perform runs with a finer grid of 2562 cells 14 , and we get the same result over the

common range of wavenumbers, showing these runs are sufficiently resolved for the purpose of

computing S(k). Note that in the plots the numerical wavenumber kx is corrected to account

for discretization artifacts in the standard 5-point Laplacian, k2 = sin2(kx∆x/2)/(kx∆x/2)2.

The mismatch between theory and simulation is not so surprising since the theory is for a

weak gradient applied to a system that is essentially near equilibrium; this is not true in this

setup. The only way to get this isothermal system out of equilibrium is via the boundaries,

so the system is actually far from chemical equilibrium near the boundaries and then goes to

chemical equilibrium in the middle of the domain, but in the middle the gradient disappears.

A new more sophisticated theory is required that linearizes not around a constant state but

rather around a spatially-dependent state (this is automatically done in our code). Also,

boundaries (i.e., confinement effects) may need to be included, especially for penetration

depths comparable to the system size.

13 Note that in this case the mismatch between the theory and simulations at very small k is due to the

effect of boundaries [107].
14 For the more resolved runs ∆x = ∆y = 5 · 10−4, ∆t = 6.25 · 10−8 for the problem without hydrodynamics

and ∆t = 6.25 · 10−9 with hydrodynamics.
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FIG. 5. (Top) The structure factor Srd(k) for the reaction diffusion model (31) in the presence of

an applied gradient. For small d (fast reaction) the fact that the structure factor is not perfectly

flat (constant) can be explained by (32) and comes from the thermodynamic inconsistency of the

reaction-diffusion model. (Bottom) Non-equilibrium structure factors Sneq(k) = S(k)− Srd(k) for

values of penetration depth d varying from∞ (no reaction) to d = 10−3, the width of one grid cell.

Numerical results are shown with symbols, and the theoretical prediction (C2) is shown as a line

with the same color. In the absence of a gradient is flat, Seq ≈ 1.4 · 10−20.
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C. Pattern Formation

Since the seminal work of Turing [108], pattern formation in deterministic reaction-

diffusion systems has been investigated extensively, mostly in theoretical studies but also by

laboratory experiments [109, 110]. The study of stochastic systems is more recent and, as

described in the introduction, has primarily focused on models based on a reaction-diffusion

master equation (RDME). Such a model was introduced by Mansour and Houard [111] as

a practical numerical scheme for the study of correlations in spatially-distributed reactive

systems. Subsequently RDME-based models have been used to study the influence of fluc-

tuations on pattern formation for a variety of reaction-diffusion systems [3–6]. Recently, a

spatial chemical Langevin formulation (SCLE) was proposed [46] and the RDME, SCLE and

deterministic equations were compared for the development of patterns in the Gray-Scott

model; it was observed that the SCLE is qualitatively similar to the RDME for the majority

of examined sets of parameters, but not always. All of the RDME-based models usually use

simplified descriptions of diffusion, but recently it has been observed that accounting for

cross-diffusion effects (which are included in complete generality in our formulation) may

lead to qualitatively-different behavior for Turing instabilities [112–115]. Particle simula-

tions including full hydrodynamics have also been performed using the DSMC method [116]

and molecular dynamics [7]; these are, however, limited to small systems in (quasi) one

dimension because of the high computational cost of particle simulations.

In our final example we consider pattern formation in the Baras-Pearson-Mansour (BPM)

model (26) for a dilute gas mixture with full hydrodynamic transport. The system is initial-

ized in a uniform constant “reference” state in which the number densities of the different

species are as specified in Table III. These number densities and the reaction rates are set

so that the reference state is similar to that investigated in [70]. Specifically, under the

assumption that the number densities of the reservoir or “solvent” species S, Uf , and Vf are

fixed, the deterministic dynamics of the three reactive species U , V , and W starts close to

the single unstable fixed point; the stable attractor of the dynamics is a limit cycle around

this unstable point. Of course, when the number densities of the solvent species are not

fixed the dynamics is six-dimensional and much more complex. Since we consider a time-

dependent non-equilibrium scenario the chemical Langevin form of the noise (23) was used

for the stochastic chemistry.
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In the standard BPM model the solvent species (S, Uf , and Vf ) have fixed concentrations

but in our hydrodynamic simulations they were fixed only at the boundaries. These three

species are also made abundant to buffer them from having rapid variations in concentration

(see Table III). In the limit of infinite concentrations of the solvent species (S, Uf , and Vf )

the dynamics approaches a reaction-diffusion model in which advection as well as momentum

and heat transport become negligible. The reference (initial) values for mole fraction are

used to prescribe Dirichlet boundary conditions for species on each side of the domain. This

setup mimics open reservoirs in the form of permeable membranes [43]; note however that

implementing boundaries that are also open for advective mass transport (i.e., inflow and

outflow) is quite challenging [117] and not presently supported in our implementation. At

the boundaries, the temperature is fixed at T = 300K and the fluid velocity is set to zero

(no-slip) so species transport is primarily due to mass diffusion.

In our hydrodynamic simulations the fluid is modeled as a hard sphere dilute gas so the

transport coefficients depend on the masses and diameters of the particles of each species.

The particles for all species in the BPM model have equal mass (m = 6.64 · 10−26 g) so as to

ensure that the reactions conserve mass. For all species the particles have only translational

energy and no internal degrees of freedom (i.e., z = 0) so pressure and enthalpy are unaffected

by reactions. In the BPM model species U plays the role of the “inhibitor” while species V

is the “activator.” [110] Typically pattern formation occurs when the inhibitor diffuses faster

than the activator so we set the diameter of species U particles to be smaller than that of V

particles, specifically d1 = 0.125 nm and d2 = 0.5 nm. Since we take k+
1 � k−1 (see Table III),

the intermediary species, W , supports the activation of V and thus we set the diameters of

V and W to be equal (this makes these two species hydrodynamically indistinguishable).

The diameters of the other species (S, Uf , and Vf ) are small, d4 = d5 = d6 = 0.025 nm,

so they diffuse rapidly from the boundaries and within the system. These specific values of

the diameters are chosen such that the self-diffusion coefficient of S (and Uf , Vf ) is roughly

an order of magnitude larger than the diffusion coefficient of U , which is itself an order of

magnitude larger than the diffusion coefficient of V (and W ).

The system is simulated in a rectangular domain that is divided into 128× 128× 1 cells

with ∆x = ∆y = 100 nm. The magnitude of the noise is varied by varying the domain

thickness, which was either ∆z = 100 nm (low noise) or 10 nm (high noise). The reference

value for the number of molecules per cell for the species of interest, U , is O(104) in the
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Reaction R1 R2 R3 R4 R5

k+ 2.0 · 10−11 2.0 · 10−11 3.3333 · 109 3.3333 · 1012 3.3333 · 1012

k− 2.0 · 10−17 2.0 · 10−12 3.3333 · 10−1 3.3333 · 105 3.3333 · 105

Species U V W S Uf Vf

Boundary nr 1.513 · 1019 4.38 · 1018 3.8 · 1017 5.0 · 1020 1.33 · 1020 5.0 · 1020

TABLE III. Tables of reference number densities (bottom) and reaction rate parameters (top) for

BPM model used to create Fig. 6, in CGS units.

former case and O(103) in the latter. The total number of solvent molecules per cell is O(106)

for weak noise and O(105) for strong noise. The time step is ∆t = 10 ps, as determined

from stability requirements for the explicit temporal integrator.

Figure 6 illustrates the pattern formation observed in the system for low noise (top

row), high noise (middle row), and deterministic evolution (bottom row) started from a

perturbed initial condition generated by the high noise simulation (see figure caption). The

boundaries take some time to influence the center of the domain, so in the center the

reservoir species are depleted and the system moves toward chemical equilibrium. However

the boundary continuously forces the system so eventually spotted patterns develop, starting

near the boundary, eventually filling the system. The resulting patterns are qualitatively

similar to the “λ pattern” observed by Pearson [96] in the GS model. In simulations with

only species diffusion (i.e., setting all other transport to zero) we find similar patterning,

indicating that this system is well-approximated by reaction-diffusion due to very large

solvent concentrations.

In [108] Turing writes, “Another implicit assumption concerns random disturbing influ-

ences. Strictly speaking one should consider such influences to be continuously at work. This

would make the mathematical treatment considerably more difficult without substantially

altering the conclusions.” However, we see from Fig. 6 that the evolution is qualitatively

different when large spontaneous fluctuations are present (middle row), as compared to

when they are absent (bottom row). Specifically, the speed at which the patterns develop

and propagate is noticeably accelerated by the spontaneous fluctuations (top and middle

row), though the patterns themselves are qualitatively unchanged in this particular case.

Other studies using reaction-diffusion models and particle simulations have reached similar

35



FIG. 6. Time sequence of images of ρ1 (species U) at t = 10, 15, 20, 25, and 30 µs (time step

∆t = 10 ps, for other parameters see Table III). The top row is a low noise case corresponding to

a domain of thickness of 100 nm; the middle row is a high noise case corresponding to a domain

of thickness 10 nm; and the bottom row is the deterministic evolution with an initial perturbation

introduced by keeping high noise on up to time t = 2 ns, and then turning the noise off. The color

scale spans from ρ1 = 3.3 · 10−4 (blue) to ρ1 = 2.0 · 10−3 (red).

conclusions [3–6]. In [118] the authors investigated the Gray-Scott model by RDME sim-

ulations and concluded, ’Complex spatiotemporal patterns, including spiral waves, Turing

patterns, self-replicating spots and others, which are not captured or correctly predicted by

the deterministic reaction-diffusion equations, are induced by internal reaction fluctuations.’

V. CONCLUSIONS AND FUTURE WORK

In this work we have formulated a fluctuating hydrodynamics model for chemically reac-

tive ideal gas mixtures, and developed a numerical algorithm to solve the resulting system

of stochastic partial differential equations. In our Langevin formalism, the stochastic mass,

momentum and heat flux as well as the stochastic chemical production rate, are modeled
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using uncorrelated white noise processes, and the local number densities are real variables.

This is contrast to the more traditional chemical master equation (CME) description of re-

actions that accounts for every individual reaction as a small jump of the (potentially very

large) integer number of reactant molecules. We formulated the thermodynamic driving

force for chemical reactions in agreement with nonlinear nonequilibrium thermodynamics

[59] and considered two different Langevin formulations of the stochastic chemical produc-

tion rate. The first formulation is based on the law of mass action cast in the GENERIC

framework [62] and leads to a noise covariance that is the logarithmic mean (LME) of the

forward and reverse production rates. This formulation is fully consistent with equilibrium

statistical mechanics, more specifically, the resulting dynamics is time reversible (i.e., sat-

isfies detailed balance) with respect to the Einstein distribution for a closed system. The

second formulation is based on the chemical Langevin equation (CLE) [47, 57, 69], and while

it is not consistent with equilibrium statistical mechanics this form has its own merits.

We compared the two formulations on two chemical reaction networks for a well-mixed

system, for both a simple dimerization reaction and a more complex network exhibiting

bistability. We confirmed that at thermodynamic equilibrium the LME is more appropriate

than the CLE, however, this is reversed for systems away from equilibrium, when compared

with the CME. Not unexpectedly, neither is found to be entirely appropriate for describing

rare events or large deviations from equilibrium. These examples remind us that a stochastic

differential equation, which is a diffusion process, cannot be a uniformly accurate approxi-

mation for the CME, which is a Poisson process; the large-deviation statistics for Poisson

noise is different than that of Gaussian noise. As is well-known, this failure of Langevin

approximations is in fact closely connected to the fact that traditional linear nonequilibrium

thermodynamics fails to describe chemical reactions because the entropy production rate

is generally a non-quadratic function of the thermodynamic driving force (affinity). The

mesoscopic Kramers picture of chemical reactions, as developed for isomerization in Ref.

[59], is an interesting approach, which, however, remains mostly of theoretical utility; nu-

merical simulations of this model would need to handle additional dimensions, as well as

very slow diffusion across the reaction barrier. Furthermore, it is not obvious how to extend

this description to general multispecies fluids with complex reaction networks.

Another alternative coarse-grained description of stochastic chemistry, which we did not

consider in this work, is tau leaping [66, 119, 120]. Tau leaping is usually seen as a numerical
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method for approximately solving the CME, and the CLE can be seen as an approximation

to tau leaping in a specific (central) limit in which a Poisson and a Gaussian variable

become indistinguishable [66]; observe however that the two kinds of distributions always

have different tails. A different and more interesting characterization of tau leaping is to

see it instead as an alternative to the CLE that maintains the Poisson nature of the noise

rather than replacing it with Gaussian noise. In the limit that the time step ∆t → 0, for

Gaussian noise one gets the CLE, and for Poisson noise one gets, in principle, the CME.

In this limit using the SSA algorithm is an efficient method to solve the CME exactly,

and tau leaping is only useful as a numerical scheme for large ∆t. As mentioned earlier,

computational fluctuating hydrodynamics should only be considered useful (or even valid)

when each update of the coarse-grained degrees of freedom involves an average over many

molecular events, such as many molecular collisions for momentum and energy transport, or

many reactive collisions for chemistry. In other words, to distinguish it from the CME and

the associated SSA algorithm, for tau leaping one should choose the time step size in a way

that ensures that many reactions occur in each reactive channel. In this sense, tau leaping

can be seen as a coarse-graining in time of the CME jump process, and, when combined with

spatial coarse-graining, has the potential to be a useful coarse-grained model that bypasses

the need for Langevin models of chemistry in our numerical schemes for reactive fluctuating

hydrodynamics. Additional studies are needed to access the accuracy of tau leaping in

situations where Langevin descriptions do poorly and such investigations are in progress.

While the CME is a well-agreed upon and well-justified description of statistically ho-

mogeneous systems, the story is much less clear for systems with spatial inhomogeneity;

in fact, the precise mathematical meaning of “well-mixed” and the range of validity of the

RDME remains obscure. [21–23] A law of large numbers has been rigorously proven for sev-

eral particle models and takes the expected form of a deterministic reaction-diffusion partial

differential equation. [72, 73] Regarding fluctuations, however, there are very few particle

models for which central limit theorems [121] or large deviations functionals [122] are known

explicitly. It has been demonstrated that inhomogeneity leads to qualitative changes in the

nature of phase transitions in bistable systems [123]. It is also known that fluctuations can

effectively renormalize the macroscopic transport and lead to non-analytic corrections to

the law of mass action [1, 2]. It remains to be seen whether nonlinear spatially-extended

fluctuating hydrodynamics models can correctly reproduce this effect compared to particle
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simulations. 15

Furthermore, most particle models used for reaction-diffusion problems assume indepen-

dent random Brownian walkers that react when coming near each other, and thus completely

neglect transport mechanisms such as advection, sound waves, thermal conduction, etc. Fur-

thermore, the mechanism of diffusion used in these models implicitly neglects the long-ranged

hydrodynamic correlations present among particles diffusing in a viscous solvent [52]. No-

table exceptions are variants of the Direct Simulation Monte Carlo method (DSMC), which

use a dilute [124, 125] or dense [126] gas kinetic theory description of momentum and energy

transport fully consistent with fluctuating hydrodynamics [126]. While chemical reactions

are commonly included in DSMC schemes [127, 128], further studies of fluctuations and their

consistency with nonequilibrium thermodynamics are needed. While some investigations of

spatially-distributed reactive systems have been performed using DSMC [116], a careful

comparison to coarse-grained mesoscopic descriptions such as fluctuating hydrodynamics is

needed. To model realistic chemistry modern DSMC codes use either the Total Collision

Energy (TCE) model [124] or the more recent Quantum-Kinetic (QK) model [129], both of

which we plan to compare with our formulations of reactive fluctuating hydrodynamics.

In Section IV B we studied the coupling of velocity fluctuations and chemistry in a sys-

tem kept in a non-equilibrium steady state via boundary conditions. We found that, in

agreement with existing theoretical computations, the chemical reactions have a strong ef-

fect on the giant long-range correlated concentration fluctuations. In this work we focused

on gas mixtures, for which the Schmidt number is of order unity. We found that reactions

profoundly change the nature of the giant fluctuations, whose spectrum switches from the

well-known ∼ k−4 at large wavenumbers to a flat plateau (with a value controlled by the

reaction rate) at small wavenumbers. This could be useful, for example, for experimentally

measuring reaction rates. However, we found that the simple quasi-periodic near-equilibrium

theory we constructed was not in quantitative agreement with the simulations, indicating

that a more precise theory is needed.

Reactive liquid mixtures are common in practice and exhibit interesting coupling of hydro-

dynamics with transport that has been studied both theoretically [130] and experimentally

[9]. The Schmidt number in liquids is, however, very large, and the compressibility is very

15 Fluctuating hydrodynamics simulations have been shown to correctly desribe the renormalization of dif-

fusion coefficients in binary fluid mixtures [103], but we are not aware of any work in this direction for

reactive systems.
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small (i.e., the speed of sound is very large), making the method presented here compu-

tationally infeasible. In the future, we will consider extending low Mach number (quasi-

incompressible) methods that treat momentum diffusion implicitly to include stochastic

chemistry, by combining Langevin or tau-leaping based descriptions of chemistry with the

formulation and numerical methods developed in Refs. [44, 131] for general non-ideal liquid

mixtures.

Finally, the influence of hydrodynamic fluctuations on reactions will likely be very im-

portant for surface chemistry. [132, 133] An important application is heterogeneous catalysis

in which a highly reactive catalytic surface facilitates bond breaking and bond rearrange-

ment of adsorbed molecules. In this context mesoscale simulations are particularly useful

for the study of nano-catalytic systems [134]. Microscopic catalytic particles have many

advantages, such as higher activity, increased selectivity, and longer lifetime. However, to

operate effectively these particles must have electrical contact with a substrate (typically a

flat surface) and they must not be so small as to not have enough electrons to catalyze a

reaction. For example, nanowire catalysts are typically 10-100 nm in size so the hydrody-

namic environment in which the chemistry and transport occur is of mesoscopic scale (a few

microns).

As in the case with chemistry in bulk flow, particle-based simulations will be useful bench-

marks for comparison with reactive fluctuating hydrodynamics modeling surface chemistry.

Furthermore, molecular simulations can be embedded within a fluctuating hydrodynamic

code to create an Algorithm Refinement (AR) hybrid. [39, 135] The idea is to use a particle-

based simulation for the domain near the surface to capture the physics at the molecular

scale, such as adsorption of reactants onto the surface, surface diffusion, surface reactions,

and desorption of products. This particle-based simulation would then be coupled to a fluc-

tuating hydrodynamic simulation that treats the bulk fluid. Previous work for non-reactive

fluids has already proven the utility of AR hybrids for simple interfaces [53] and this numer-

ical framework should prove useful in the study of surface reactions and active membrane

transport.
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Appendix A: Deterministic and Stochastic Transport in Ideal Gas Mixtures

This appendix summarizes fluctuating hydrodynamics for ideal gas mixtures; for a more

general and detailed exposition see [42]. Each of the hydrodynamic transport terms in (1)-

(3) contains a deterministic term, denoted with an overbar and a stochastic term denoted

by a tilde (e.g., F = F + F̃). The deterministic viscous tensor is,

Π = −η
(
∇v + (∇v)T

)
−
(
κ− 2

3
η

)
I (∇ · v) , (A1)

where η and κ are the shear and bulk viscosity, respectively. We neglect any possible effect of

the chemical reactions on the transport coefficients of the mixture. For example, we neglect

any coupling between bulk viscosity and chemical reactions, which, in principle is allowed by

the Curie principle since both are scalar processes. [74] The corresponding stochastic viscous

flux tensor can be written as [36, 136]

Π̃(r, t) =
√

2kBTη ẐΠ +

(√
kBκT

3
−
√

2kBηT

3

)
Tr(ẐΠ). (A2)

The symmetric Gaussian random tensor field, ẐΠ, is formulated as ẐΠ =
(
ZΠ + (ZΠ)T

)
/
√

2

where ZΠ is a white-noise random Gaussian tensor field, that is, 〈ZΠ〉 = 0 and,

〈ZΠ
αβ(r, t)ZΠ

γδ(r
′, t′)〉 = δαγδβδ δ(r− r′) δ(t− t′) .

with α, β, γ, δ = {x, y, z} being spatial components.

The deterministic mass flux and heat flux depend on the gradients of concentration,

pressure, and temperature. For an ideal gas we can write the deterministic fluxes as

F = −ρYD

(
d + X χ̃∇T

T

)
and (A3)

Q = −λ∇T + (kBT χ̃
TM−1 + hT )F (A4)
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where h is a vector of specific enthalpies. Here the diffusion driving force [83] is

d = ∇X + (X − Y )
∇p
p
.

and X , Y andM are diagonal matrices of mole fractions X, mass fractions Y and molecular

massesM . The matrix of multicomponent flux diffusion coefficients, D, the vector of rescaled

thermal diffusion ratios, χ̃, and the thermal conductivity, λ, can be obtained from standard

software libraries, such as EGLIB [137], or from standard references, such as Hirshfelder et

al. [138].

For the ideal gas transport coefficients described above, we define

L =
ρm

kB
YDY , ξ = kBTM−1χ̃, ζ = T 2λ. (A5)

where m = (
∑

s Ys/ms)
−1 is the mixture-averaged molecular mass. The stochastic terms for

the combined species equations and energy equation are determined from the phenomeno-

logical equations of nonequilibrium thermodynamics that relate fluxes to thermodynamic

driving forces through the Onsager matrix, and the fluctuation-dissipation balance princi-

ple. [42] Specifically, the stochastic mass flux is

F̃ = B ZF (A6)

where BBT = 2kbL, and ZF is a white-noise random Gaussian vector field with uncorrelated

components, that is, 〈ZF〉 = 0 and

〈ZF
αs(r, t)ZF

βs′(r
′, t′)〉 = δαβδs,s′ δ(r− r′) δ(t− t′)

with α, β = {x, y, z} being spatial components. Note that the matrix B can be obtained

using Cholesky decomposition; the constraint
∑

s F̃ s = 0 is ensured by construction. [42]

The stochastic heat flux is

Q̃ =
√
ζZQ + (ξT + hT )F̃ , (A7)

where 〈ZQ
α (r, t)ZQ

β (r′, t′)〉 = δαβ δ(r− r′) δ(t− t′).

Appendix B: Equilibrium distribution for a dimerization reaction

The entropy of mixing for a system undergoing dimerization is S = kB lnNp, where Np

is the number of distinct ways of forming M dimers out of a total of N monomers. This is
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straightforward to compute. The number of ways to choose 2M out of the N atoms to be

in pairs is,  N

2M

 =
N !

(2M)! (N − 2M)!

Next we need to group the 2M atoms into pairs; the number of distinct ways of pairing 2M

objects is (2M)!/2MM !. This gives the entropy

S = kB ln

(
N !

2MM ! (N − 2M)!

)
+ kBµM, (B1)

where we have included an additional reference chemical potential µ to set the equilibrium

concentration.

By expanding the logarithm of the right-hand side of (B1) using Stirling’s leading-order

approximation we obtain the thermodynamic limit of the entropy as a function of the

monomer mass fraction Y1 = (N − 2M) /N . After fixing the chemical potential from the

requirement that the most probable mass fraction is (Y1)eq = 1/2, we get,

S = NkB

[
−1

2
ln (1− Y1) (1− Y1)− Y1 ln (Y1)− 1

2
Y1 (ln (2)− 1)

]
, (B2)

This gives an Einstein distribution P ∼ eS/kB exactly matching (27).

It is useful to compare this equilibrium distribution of the LME with that of the CME for

a well-mixed system of volume ∆V . It is not hard to show that the CME for a dimerization

reaction is in detailed balance with respect to the Einstein distribution with entropy (B1),

with the reference chemical potential set to

µ = ln

(
2k+

∆V k−

)
. (B3)

We can use this to construct a rather accurate continuum approximation to this exact

microscopic result by including the next order term in the Stirling formula,

N ! ≈
√

2πN

(
N

e

)N
, (B4)

when expanding (B1). This gives a better continuous approximation (labeled “Stirling” in

the figures in the main body of this paper) to the discrete Einstein distribution than (B2),

especially for small number of particles in the well-mixed cell.
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Appendix C: Giant fluctuations in the presence of reactions

This appendix outlines the fluctuating hydrodynamics theory for the long-range correla-

tions of concentration fluctuations in a binary mixture undergoing a dimerization reaction,

as studied numerically in Section IV B. We neglect the Dufour effect and assume the system

to be isothermal, taking contributions from temperature fluctuations to be of higher order.

Furthermore, we neglect gravity, assume the system is incompressible, and take the density

and transport coefficients to be constant. We consider a “bulk” system [35], i.e., we neglect

the influence of the boundaries. This gives an accurate approximation for wavenumbers

that are large compared to the inverse height of the domain; for smaller wavenumbers the

boundaries are expected to suppress the giant fluctuations [35, 107]. We also neglect the

stochastic mass flux in the concentration equation since we are concerned with the nonequi-

librium contribution due to the forcing by the velocity fluctuations.

We assume that all of the concentration gradients are in the same direction (say, the

y axis). The incompressibility constraint is most easily handled by applying a ∇ ×∇×

operator to the momentum equation [35] to obtain a system involving only the component of

the velocity parallel to the gradient, v‖ ≡ vy. The same calculation can easily be generalized

to a multispecies mixture as well, see Appendix B in Ref. [42]. This system of equations

can be most easily solved in the Fourier domain, by considering wavevectors k in the plane

perpendicular to the gradient, k = k⊥.

It is very straightforward to derive (29) in the limit of large Schmidt number by con-

sidering the fluctuating concentration equation forced by an overdamped (steady Stokes)

fluctuating velocity. The steady Stokes equation in Fourier space has the form,

ηk2v̂‖ =
√

2ηkBT0 ikŴ(t),

where T0 is the constant temperature. Here Ŵ(t) is a white-noise process (one per wavenum-

ber), giving the white-in-time velocity v̂‖(t) = k−1
√

2kBT0/η iŴ(t). A general form of the

linearized equation for the concentration fluctuations, c = δY1 = Y1 − 〈Y1〉, in Fourier space

will have the form

∂tĉ = −Dk2ĉ− ψĉ− v̂‖f = −
(
Dk2 + ψ

)
ĉ− if

√
2kBT0

ηk2
Ŵ(t),

where ψ is the reaction rate at the equilibrium point (around which we are linearizing), and

f = d 〈Y1〉 /dy is the applied concentration gradient. For our specific reaction and the choice
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of equilibrium point (Y1)eq = 1/2, we have that ψ = 3k− (to see this simply linearize (31)

around (Y1)eq = 1/2). The resulting nonequilibrium static structure factor (recall that here

we neglect the contribution due to the stochastic mass flux) is straightforward to calculate

(see, for example, Appendix B in Ref. [42]),

Sneq(k) = 〈ĉĉ?〉 =
kBT0

ηk2 (Dk2 + ψ)
f 2 =

kBT0

ηDk4 (1 + ψD−1k−2)
f 2, (C1)

which is exactly (29) with the penetration depth

d2 =
D

ψ
=

D

3k−
.

Since the Schmidt number is not very large for gases, we should improve the theory by

not taking the overdamped limit but rather adding a velocity equation and considering the

linearized inertial equations,

∂tĉ = −Dk2ĉ− ψĉ− v̂‖f

ρ0∂tv̂‖ = −ηk2v̂‖ +
√

2ηkBT0 ikŴ(t),

where ρ0 is the equilibrium density and ν = η/ρ0 is the kinematic viscosity. Solving this

system of linear SODEs gives the improved structure factor

Sneq(k) =
kBT0

ηDk4 (1 + ψD−1k−2)
(
D+ν
ν

+ ψν−1k−2
)f 2, (C2)

which shows that the finite value of the Schmidt number Sc = ν/D has an important effect

on the giant fluctuations. In particular, in the more complete theory (C2)

Sneq(k = 0) =
kBT0

ρψ
f 2

is finite and not infinite as in (C1), which assumes infinite Schmidt number.

In the more complete theory we see the following three regimes:

1. For large wavenumbers we have

Sneq

(
k �

√
D

ψ

)
≈ kBT0

ηDk4
f 2

as if there were no reaction.
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2. If the Schmidt number is small, D ∼ ν, as for gases, then for small wavenumbers we

instantly switch to a flat spectrum

Sneq

(
k �

√
D

ψ

)
≈ kBT0

ρψ2
f 2

3. If the Schmidt number Sc is large, D � ν, as for liquids, then for intermediate

wavenumbers

Sneq

(√
D

ψ
� k � S

1
2
c

√
D

ψ

)
≈ kBT0

ηψk2
f 2

we observe a change in the power law to Sneq(k) ∼ k−2. Note however that this range

spans only
√
Sc orders of magnitude in k, so even for Sc ∼ 104 (which applies to

macromolecular solutions), the k−2 power-law only extends over at most two decades.

Therefore, even for liquids with large Schmidt numbers the inertial equations should

be used to model giant fluctuations in reactive mixtures.
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