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Abstract This paper presents several efficient, exact
methods for generating the Maxwellian inflow distribu-
tion, the velocity distribution of gas molecules crossing
a plane. The new methods are demonstrated to be com-
putationally faster and more accurate than the schemes
commonly used for open boundary conditions in particle
simulations.

1. Introduction

Stochastic algorithms, commonly referred to as Monte Carlo methods, use
random numbers generated from a variety of distributions. Efficient gener-
ators have been developed for the most commonly used distributions (e.g.,
uniform, Gaussian, and exponential) and general techniques (e.g., inversion)
are available for arbitrary distributions [1, 2]. However generating a com-
plicated distribution by a generic method may not be efficient or accurate,
which is why specialized generators for specific applications are welcome.

This paper discusses the generation of random values z from the distri-



bution
2(a — 2) exp(—2?)

exp(—a?) + a /7 [1 + erf(a)] ’
As shown in section 2., this distribution arises when implementing the inflow
boundary condition for particles crossing a surface. Specifically, it is asso-
ciated with the velocity distribution of particles, Maxwellian distributed in
their moving frame of reference, that pass through a plane. This boundary
condition is very common in molecular simulations of hydrodynamic flows in
open systems [3, 4]. With this association, we call p,(z) the Maxwellian in-
flow distribution; functionals and transformations related to this distribution
are discussed in section 3..

pa(2) = z<a, (1.1)

Section 4. describes the general algorithm for generating the random ve-
locities of particles for an inflow boundary condition. For the Maxwellian
inflow distribution (1.1) there are three methods for random variate gener-
ation that are in common use. The first is inversion (see section 5.), which
has the disadvantage of being computationally expensive. The other two are
approximate acceptance-rejection schemes, discussed in [5] and in section 7.,
which are more efficient than inversion but not exact.

In section 6. we develop several exact acceptance-rejection schemes that
are more efficient than any of the three methods in common use. The com-
putational efficiency of all the schemes is discussed in section 8.. Their pro-
gramming implementation in a practical example is summarized in section 9..
We conclude in section 10. with some further remarks regarding applications
of the present schemes and their extension to other distributions.

2. Maxwellian inflow

This section establishes the mathematical formulation for inflow boundary
conditions. Readers interested in a more physical introduction, presented in
the context of a specific example, are directed to Section 9..

The general inflow boundary condition for the Boltzmann equation [6] is

f(t,z,v) (v,n(x)) = b(x,v),
wheret > 0, z € 9D and v € R? is such that (v, n(z)) > 0. Here dD denotes
the boundary of the spatial domain D ; n(z) is the unit inward normal vector
at © € 9D ; (v,n) is the scalar (dot) product of vectors v and n. The function
b determmes the inflow intensity (waiting time parameter)

A== /aD/m@ b(z,v) dv o(dz) (2.1)



and the inflow law

1
X b(x,v), (2.2)

where o(dz) denotes the uniform surface measure (area) on 0D and ¢ is the
weight of the incoming particles.

A case of special interest is Maxwellian inflow

— MQ»V7T<U) (Ua 6) ’ if xe r, (U, 6) >0,
oz v) = { 0 , otherwise,

where

0 lv—V|P*
Myyr(v) = (27T)3/2 exp (_ oT

is the Maxwellian distribution and
e =n(zx), Veel COD,

is the unit normal for some plane part I" of the boundary. The inflow intensity
(2.1) takes the form

1
A=-0o()C, (2.3)
g
where
C= M,vr(v) (v, e)dv. (2.4)
(v,e)>0

According to the inflow law (2.2), the position of the incoming particle is dis-
tributed uniformly on I'. Its velocity is generated according to the probability
density

_ [ CT ' Myyr(v) (vye), if (v,e) >0,
a(v) = { 0 ., otherwise. (2.5)

3. Inflow functionals and transformations

Here we calculate functionals of the normal velocity component of the in-
coming particles (cf. (2.5))

B(w) = [ wl(.)a)dv. (3.1)
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Moments are obtained for

O(x) =Yp(z) =2,  k=1,2,.... (3.2)

These moments will fix the normalization (cf. (3.11)) and quantify the errors
in the approximate generators (see Section 7.3.).

Let e be given in spherical coordinates as

e= (cosgp sinf, siny sinf, cos@), pel0,2r), 6€]l0,7].

Introduce the orthogonal matrix

cosp cosf) —sing cosp sinf
Qe) = | sinpcosf cosp sinp sind
—sinf 0 cos 6

and note that

Qe e = (0,0,1),
where ) denotes the transposed matrix. Using the substitution
v=V+V2TQ)w, dv=2T)**dw, (3.3)
and taking into account that
(V+V2TQe)w,e) = (V,e) + V2T ws (3.4)
and

Myva(V + VT Q(e) w) = G exv(—|wll). (3.5)

one obtains

o) - 227 [ U(VAT (0t ws)) exp(—lu?) (a4 ws) x(a+ ws) do

- %\/?/ " U(VET (0 2)) (- 2) exp(—2) dz, (3.6)

where y denotes the Heaviside function and

_ (o)
a= T (3.7)
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Note that

/ exp(—2%)dz = % 1+ erf(z)], Ve eR, (3.8)
x 1
/ (—2)exp(—2%)dz = 3 exp(—a?), Ve eR, (3.9)
and
C o 2 _ VT _ 2
2% exp(—z°)dz = 1 erf(z) 5 exp(—z7), V>0 (3.10)
0
where
erf(y) 2 ye p(—2%) dz y>0
= — XD(—
VT Jo
erf(y) = —erf(—y), y<0.
Since ¢(1) = 3.1)), we obtain from (3.6) (cf. (2.4))
—g\/zT/ a— z) exp(— dz—g\/ m (3.11)
where
m(z) = exp(—2?) + x /7 [1 + erf(z)], TER. (3.12)
Thus, (3.6) takes the form
(a—2))(a—2) exp(—2?)dz. (3.13)

In particular (using (3.10)), we obtain the mean value (cf. (3.2))

2\/_

(a — 2)? exp(—2?) dz

(I)(Q/Jl) =

\/_1—|—erf ] (1+2a%) +2a exp(—a?)

Vrall —|— erf(a)] + exp(—a?)



4. General Algorithm

We now turn to the question of how to generate a random variable £ according
to the probability density (2.5). Considering the substitutions (3.3) and
taking into account (3.4), (3.5), (3.7), (3.11), (3.12), one obtains

B 2m(a) L7t (a + ws) exp(—||w|[?), if a+ws>0,
qwy, w, ws) = { 0 , otherwise.

The components of w are independent; the first two components are dis-
tributed according to the probability density

1
- exp(—wi — w3) wy,wz € R,
and the third is obtained as
w3 = —z2, (4.1)

where z is distributed according to the Maxwell inflow distribution

2
m(a)

Pa(2) = (a — 2) exp(—2?), z € (—00,a). (4.2)

The random variable ¢ is obtained as (cf. (3.3), (4.1))

w*
£E=V+V2TQ(e) w;I* . (4.3)
_Z*

The variables wj and w3} are independent Gaussians with zero mean and
variance 1/2. In the case a = 0, one obtains from the inverse transformation
(see Section 5.) and (3.9)

2= —y/—logu, (4.4)

where u is uniformly distributed on (0, 1). The generation of the variable z*
in the case a # 0, which is the point of this paper, will be discussed in the
following sections.

5. Inverse transform

One method to obtain the component z* to be used in (4.3) is by the inverse
transform method [1, 2], that is, by solving numerically the equation

/Z Pa(x)dr = u, z<a, (5.1)
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where w is uniformly distributed on (0, 1) . Denote the left-hand side of equa-
tion (5.1) by F,(2). According to (3.8) (3.9), and (4.2), one obtains

1

T

{ exp(—2%) + a7 [l + erf(z)]}.

Furthermore, F!(x) = p,(x) and

2

(@) exp(—2?)[22° —2za —1].

p,(2) =

Thus, the function F, has an inflection point at

o) = T2 (5.2

and the function p, takes its maximum there, that is,

max p,(z) = pa(z(a)) . (5.3)

z<a

Note that z(a) < min(a,0).

Equation (5.1) is solved by a Newton iteration, starting with the initial
guess zg = z(a) . Calculate the error

Ey=F,(z1) —u

and stop if it is small enough, specifically if |Fy| < E4. Otherwise, calculate
the new guess

Ek — m(a) Ek
Fl(z) b 2(a— z) exp(—22)

and continue the iteration.

Rk+1 = 2k —

The inversion method has the disadvantage of being computationally ex-
pensive relative to other generators, as discussed in section 8..

6. Acceptance-rejection

This section discusses the use of the acceptance-rejection technique to gener-
ate the component z* to be used in (4.3). This technique is based on selecting
a suitable majorant (envelope) p such that (cf. (4.2))

P() <), Vz<a. (6.1)



The component z* is generated according to the probability density

1
—— p(2), <a, 6.2
A Erie B (62)
and is accepted with probability
Pa(2”)
e (0
SO
1
a 6.4
J° . p(x)dx (64)

is the acceptance rate.

The efficiency of the acceptance-rejection method obviously depends on
the choice of the envelope function p. Ideally the acceptance rate will be
close to one and the probability density (6.2) is a distribution that can be
generated efficiently. The remainder of this section presents four envelope
functions, two for each case a < 0 and a > 0. We later show (see section 8.)
that these envelopes yield efficient acceptance-rejection schemes, with two of

them specialized for the regime |a| < 1 (low-speed flows).

6.1. Envelope 1 (a < 0)

For a < 0, consider the envelope

and note that (cf. (3.9))

/Z pi(x) de = ! exp(—2%).

o m(a)

The acceptance rate (6.4) is

m(a)
exp(—a?)

and tends to 1 as @ — 0 (see Figure 1). One obtains from (6.5)

2" = —y/a® —logu
and the acceptance probability (6.3) is
a—z* 0, if z*—a,
— :
1, if 2z¥— —o0.

_Z*
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Figure 1: Acceptance rates for: envelopes 1 and 3 (solid lines);
and 4 (dashed lines).
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6.2. Envelope 2 (a <0)
For a < 0, consider the envelope (cf. (5.2), (5.3))

. B ﬁl(z) , if Z<Ba)7
pa(2) = { pa(z(a)), if z€[B(a),a),

where the function (3 satisfies

fla) <a.

The previous case is obtained for §(a) = a. One obtains

| il = — [ exp(-5(@)?) + 2 exp(—2(?) (a — (@) fa - G(a)]

o m(a)

and the corresponding acceptance rate (6.4). Our particular choice is

fla) =a—(1—-a)(a—=2(a),

which gives a favorable acceptance rate over a wide range of a (see Figure 1).

For this piece-wise envelope, with probability

exp(—f(a)?)
exp(—0(a)?) + 2 exp(—2(a)?) (a — z(a)) [a — B(a)]

z* is generated according to the probability density
2 exp(B(a)?) (—z) exp(—2?), z < f(a),
so that (cf. (6.6))

With probability

2 exp(=2(a)?) (a — 2(a)) [a — B(a)]
exp(—f(a)?) + 2 exp(—z(a)?) (a — z(a)) [a — 3(a)]

z* is generated uniformly on [3(a), a] and accepted with probability

T p(a(a)? — ().

a— z(a)
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6.3. Envelope 3 (a > 0)

For a > 0, consider the envelope

A B o(2) , if 2<0,
p3(z) = { Qm(al))—l (a—=z2), if z€(0,a),

and note that (cf. (3.8), (3.9))

/_ioﬁg(z)dz: mza) (aﬁ+1+a2>.

The acceptance rate (6.4) is

m(a)
aT+1+a?’
which is shown in Figure 1 to be close to unity for a < 1.
With probability

a~/T
a7+ 1+ a?
one generates z* according to the probability density

% exp(—2?), 2 <0,
so that z* is a one-sided Gaussian with parameters 0 and 1/2. With proba-
bility
1
a\/mT+1+a?

one generates z* according to the probability density
2 (—z) exp(—2?), 2 <0,

so that z* is defined in (4.4). With probability

CL2

a/T+ 1+ a?
one generates z* according to the probability density

2
E(G—Z), ZE(O,&),
so that

Z=a(l-+u),

and accepts it with probability
exp(—(2")?).
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6.4. Envelope 4 (a > 0)

For a > 0, consider the envelope

. B Pa(2) , if 2<0,
Pa(2) = { 2m(a)ta exp(—2?), if 2>0,

and note that (cf. (3.9))

/a pa(2) dz = L<2a\/77r—|—1>.

oo m(a)
The acceptance rate (6.4) is

m(a)
2aT+1’

which is shown in Figure 1 to be favorable over a wide range of values, going
to unity as a — 0o.

With probability

2a+/T
2a+/m+1

one generates z* according to the probability density

1
— exp(—2?), zE€R,

Nz

so that z* is Gaussian with zero mean and variance 1/2. With probability

1
2am+1

one generates z* according to the probability density
2 (—2) exp(—2?), 2 <0,

so that z* is defined in (4.4), and accepts it with probability

palz?) 1 , it 2 <0,
—— =4 1—2%/a, if 2*€(0,a),
Pa(z") 0 if z*>a.

Y
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7. Approximate methods

This section presents two approximate acceptance-rejection methods that are
in common use [5]. The schemes are approximate because the envelopes do
not satisfy (6.1) and thus the distributions they generate only approximate

pa(z) .
7.1. Box envelope

The first approximate method uses a rectangular box envelope (cf. (5.2),

(5.3))

pp(z) = { pa(%(fc)), Z<(altieiv?isi?<a)7

where z_(a) < 2-(a) < a are some parameters to be specified later. Note
that

2 0, z < 2<(a),
/ pe(z)dr = pa(2(a)) (z — z<(a)), z-(a) < z < z-(a),
e pa(z(a)) (2> (a) — z<(a)), z> z(a).

One generates z* as

which is accepted with probability (cf. (6.3))

pi??ii;% B aa__zf; exp(z(a)® — (°)?).

This method is approximate since the condition (cf. (6.1))

Pa(2) < Pp(2)

is not satisfied for z < z.(a) and for z > z-(a). The actual distribution
generated by the box envelope is

~ o(2)/m(a), 7e(a) < 2 < 22 (),
Pa(z) = { g 0, otherwise,

where



7.2. Reservoir

The second approximate method uses the envelope

2
m(a)

Pr(z) = (a — 2<(a)) exp(—2?),
where z-(a) < a is some parameter to be specified later. One generates z*
according to the probability density

1

ﬁexp(—ZQ) (7.1)
so that z* is a Gaussian with zero mean and variance 1/2. The generated
value is rejected if z* > a, accepted with probability (cf. (6.3))

Pa(2¥) _a— z*
pr(z*)  a—z2.(a)

(7.2)

if z* > z_(a), and accepted with probability one otherwise.

The reservoir method is so named because it has the following physical
interpretation: A particle is generated in a reservoir with position = and
velocity v. The position is chosen uniformly from the interval (—L,0) and
the velocity chosen as v = a — z where z is distributed as (7.1). The particle
is accepted if it moves past the origin during a time interval 7, that is,

x+vr >0 or (a—2)T>ul.

Taking
L
T = —
a—z2<(a)

gives us that z is accepted with probability (7.2).
Note that this method is approximate since the condition (cf. (6.1))
Pa(2) < Pr(2)

is not satisfied for z < z.(a). The actual distribution generated by the
reservoir envelope is

. 1 pa(2), 2<(a) <z <a,
x <L .
Pr(2), otherwise,

where

mala) = [ jpa<z> do+ [ pnl)ds.



7.3. Truncation Errors

The error in these approximate methods is most easily seen from the absolute
fractional error in the moments, that is,

(=) — ()
(=)

where (cf. (3.13))

(z") = / 2 pa(2) dz and (21} = / 2 Pa(2) dz .
This error is shown in Figure 2 for the box and reservoir envelopes using
typical values for the parameters (see [5, 7]) in these approximate envelopes.
For the higher moments the error is large (a few percent) when a < 0. This
error can be reduced by suitable choice of the envelopes’ parameters but at
the price of computational efficiency (see Section 8.).

8. Computational Efficiency

The various numerical schemes outlined in the previous sections are sum-
marized in Tables 1-5. In those tables, #,, R/, and R/ are independent,
uniformly distributed random values in the interval (0,1) and R, is a normal
(Gaussian) distributed random value with zero mean and unit variance.

The computational efficiencies of the different generators were evaluated
by measuring CPU time. Following [5], the relative efficiency was obtained
by normalizing these CPU times relative to the CPU time of the box envelope
method (see Section 7.1.) for a = 0. Parameter values typical of common
usage were used, specifically: E;y = 107° for inversion; z.(a), 2= (a) for box
and reservoir envelopes, as in Figure 2.

Figures 3 and 4 present the computational efficiencies of the various meth-
ods. Figure 4 shows that the first method, which combines Envelopes 1 and
3 (see Sections 6.1., 6.3. and Table 1) is the most efficient for low speed flows
(la| < 1). Figure 3 illustrates that the second method, which combines En-
velopes 2 and 4 (see Sections 6.2., 6.4. and Table 2) is efficient over a wide
range of speed ratio. Inversion is computationally expensive, even though
Newton’s method converges quickly and our implementation uses an efficient
polynomial approximation for the error function [9]. For a < —1 the box
method is efficient when «; = 1 but not accurate (see Fig. 2); for a; = 2 the
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Frac. error in moments

-5 -4 -3 -2 -1 0 1 2 3 4 5
a
107 T T T T T T T T T
1072k <> B
2] 2
€ 3 <Z™>
aE> 10
5]
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£
<] <z>
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g 107k 4
i
107° 5
107 L ! I L ! I I I
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 2: Absolute fractional error in the first three moments as a function
of speed ratio, a. Upper figure is for the box envelope with z.(a) = min(a —
a1, —3), z-(a) = min(a, 3) for a; = 1 (solid line) and a; = 2 (dashed line).
Lower figure is the reservoir envelope with z.(a) = min(a — 1, —3).
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box method is not competitive. The reservoir method is very inefficient for
a < 0 and not competitive with the second method (using Envelopes 2 and
4) for a > 0.

35 T T T T T T T T T
e} Envelopes 1 & 3
3l Envelopes 2 & 4 2
* Inversion
* Box (a 1= 1)
&
251 T
+ Box (oc1 =2) D S
A Reservoir S = °
21 = —
§ = S A
0 £
2 S -
w X
1.5 A _

Y|
X
X
)
)
()

0

Speed ratio

Figure 3: Relative computational efficiency versus speed ratio. Data is for:
envelopes 1 and 3 (circles); envelopes 2 and 4 (squares); inversion (stars),
box envelope (asterisks for a; = 1, crosses for a; = 2), reservoir envelope
(triangles).

9. Practical Example

For the convenience of readers wishing to implement the generators described
in this paper this self-contained section illustrates their use in the context of
a typical physics application.

Consider particles (mass p) uniformly distributed in space, with number
density p, and Maxwell-Boltzmann distributed in velocity, with mean velocity
V = (V,,V,,V,) and temperature 7. The probability distribution for the
velocity of particles, v = (v, v,,v,), crossing the y — z plane in the +x

17
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3r * Inversion i
* Box (o, = 1)

1

25r Box (0, = 2)

Reservoir

N

Efficiency

-
0
i

Speed ratio

Figure 4: Relative computational efficiency versus speed ratio in the low-
speed (|a| < 1) regime. See Fig. 3 caption for legend.

direction is
p(v) = C v exp(—|v — V[*/v3), vy >0

where vr = /2kT /i1 is the most probable thermal speed, k is Boltzmann’s
constant, and C' is the normalization constant.

From the inflow intensity (cf. (2.3), (2.4), (3.11)) the mean number of
particles crossing a surface area ¢ during a time interval 7 is

00T % {exp(—a®) + a /7 [1 + erf(a)]}

where a =V, /vp is the speed ratio. Typically an open boundary condition
is implemented by determining the number of particles that cross a surface
during a time interval and generating those particles at random times, uni-
formly distributed in the time interval [5, 7]. As shown in [8], the random
integer number of particles should be chosen from a Poisson distribution with
the appropriate mean to avoid anomalous correlations.

18



For the velocity distribution, the y and z components are independent
and generated as

=Vl w=ves o,

where R,,, R/, are independent, normal (Gaussian) distributed random values
with zero mean and unit variance.

For the special case V,, = 0, the normal component is easily generated as

vy = vr/— log R,

where #, is a uniformly distributed random value in the interval (0,1). In
the general case (V. # 0), we generate this component as v, = (a — 2z*)vr
where z* is generated from the Maxwell inflow distribution.

From our studies, we recommend generating z* by the method outlined
in Table 1 for the low speed flows in the approximate range —0.4vp <V, <
1.3vp (see Figs. 3 and 4). This method uses Envelope 1 (section 6.1.) for
a < 0 and Envelope 3 (section 6.3.) for a > 0. The method outlined in
Table 2, which uses Envelope 2 (section 6.2.) for a < 0 and Envelope 4
(section 6.4.) for a > 0, is recommended for high speed or mixed speed flows.
For reference, three alternative methods in common use, inversion (section
5.), box envelope (section 7.1.), and reservoir (section 7.2.), are outlined in
Tables 3, 4, and 5.

10. Concluding Remarks

To summarize the main results, two new formulations are developed for gen-
erating random values from the Maxwell inflow distribution (1.1). For small
la|, acceptance-rejection using the envelopes in sections 6.1. and 6.3. is rec-
ommended. For the more general case, acceptance-rejection using the en-
velopes in sections 6.2. and 6.4. are recommended. These new formulations
are simple to implement (see Tables 1 and 2) and are several times faster
computationally than the generators in common use (see Section 8.).

The most common application for generators of the Maxwell inflow distri-
bution is the implementation of open boundary conditions for particle simula-
tions, especially direct simulation Monte Carlo (DSMC) and related schemes
based on the Boltzmann equation [7]. Adaptive algorithm hybrids [10, 11, 12],
which couple a particle simulation with a continuum solver, also generate
random velocities for particles crossing the algorithms’ interface. Another
numerical application is the computation of Master Equation trajectories for
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e Ifa <O,

1. Compute z* = —y/a? — log R,.

2. If

a—z*

/
— > I,

return z*, else go to step 1.

o Ifa>0,
1. Set u = R,.
2. If
_awr > u
a\/7 + 1+ a?
then return z* = —%mn\
3. Else if
ay/7+ 1 -
a\/7 + 1+ a?
then return z* = —/—log i’,.
4. Else,
(a) Compute z* = (1 — /R )a.
(b) If

exp(—(z")?) > R,

then return z*, else go to step 1.

Table 1: Outline of acceptance rejection method using envelopes 1 and 3.
Recommended generator for low-speed problems.
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e Ifa<O,

1. Set z(a) = 3(a — Va®> +2) and B(a) = a — (1 — a)la — z(a)].
2. 1f,

exp(—f(a)?)
exp(—05(a)?) + 2[a — z(a)][a — B(a)] exp(—2(a)?)

(a) Compute 2* = —/B(a)? — log R
(b) If,

> R,

a—z*

/!
— > R

then return z*, else go to step 2.

3. Else,
(a) Compute z* = f(a) + [a — ((a)]R),.
(b) If,
o ORGP = () > R,

then return z*, else go to step 2.

o Ifa>0,
1. If
; > R
2a/T + 1 “
then z* = —\/—log N, else z* = %?Rn
2. If i
=2 g
a u

then return z*.

3. Else go to 1

Table 2: Outline of acceptance rejection method using envelopes 2 and 4.
Recommended generator for general problems.
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. Select the desired absolute error, Fy.

. Set u =Ry, k=0, m(a) = exp(—a?) + ay/7 [1 + erf(a)].
. Compute initial guess zo = 1(a — Va® +2).

. Compute current absolute error,

1

b=

{exp(—z}) + av/m [1 + erf(z)] }

. If |Ex| < Ey4, then return z* = z.
. Else,
(a) Compute new guess,

Erm(a)
2(a — z) exp(—23)

Rk+1 = Rk —

(b) Set k =k + 1 and go to step 4.

Table 3: Outline of inversion method.

. Select z-(a) and z-(a). Typically z.(a) = min(a — a1, —a2), 2-=(a) =
min(a, ap) with oy =1 or 2 and ap = 3

. Set z(a) = $(a — Va® +2).

. Compute z* = z_(a) + [2x=(a) — z<(a)] Ry.

If .
ez ) exp(z(a)? — (2%)%) > %

a—z(a “

then return z*, else go to step 3.

Table 4: Outline of box envelope method.
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1. Select z-(a). Typically z-(a) = min(a — 1, —ag) with ag = 3.
2. If a <0, compute z* = —% 1Ry, else z2* = % R,
3. If

a—z*
a— z<(a)

then return z*, else go to step 2

> R,

Table 5: Outline of reservoir envelope method.

Brownian systems, such as the “adiabatic piston” and thermal Brownian
motors [13].

Finally, the Maxwell inflow distribution may be used in the construction
of generators for other distributions. For example, [14] describes two itera-
tive methods that use the simple Maxwellian (Gaussian) generator to produce
random values from the Chapman-Enskog distribution. It should be possi-
ble to generalize these methods to generate efficiently the Chapman-Enskog
inflow distribution using the Maxwell inflow distribution schemes presented
in this paper.

References

[1] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag,
New York, 1986.

2] W. Hormann, J. Leydold, G. Derflinger, Automatic Nonuniform Ran-
dom Variate Generation, Springer-Verlag, New York, 2004.

3] J. Koplik, J.R. Banavar, Ann. Rev. Fluid Mech. 27 (1995) 257.
4] E.S. Oran, C.K. Oh, B.Z. Cybyk, Ann. Rev. Fluid Mech. 30 (1998) 403.
[5] C.R. Lilley, M.N. Macrossan, Int. J. Num. Meth. Fluids 42 (2003) 1363.

(6] C. Cercignani, The Boltzmann Equation and Its Applications, Springer-
Verlag, New York, 1988.

[7] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas
Flows, Clarendon Press, Oxford, 1994.

23



[8] M. Tysanner, A.L. Garcia, to appear in Int. J. Num. Meth. Fluids,
(2005).

[9] W.H. Press, S.A. Teukolsky, Wm.T. Vetterling, B.P. Flannery, Numer-
ical Recipes in C++: The Art of Scientific Computing, 2nd Ed., Cam-
bridge Univ., Cambridge (2002), Section 6.2.

[10] A. Garcia, J. Bell, Wm.Y. Crutchfield and B.J. Alder, J. Comp. Phys.,
154 (1999) 134,

[11] O. Aktas and N.R. Aluru, J. Comp. Phys., 178 (2002) 342.
[12] P. Koumoutsakos, to appear in Ann. Rev. Fluid Mech. (2005).

[13] P. Meurs, C. Van den Broeck, A.L. Garcia, Phys. Rev. E 70 (2004)
051109.

[14] A.L. Garcia, B. Alder, J. Comp. Phys., 140 (1998) 66.

24



