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HYDRODYNAMIC FLUCTUATIONS AND THE DIRECT SIMULATION
MONTE CARLO METHOD

Alejandro L. Garcia
Dept. of Physics, San Jose State Univ. .
San Jose, CA 95192-0106

ABSTRACT: The use of particle simulations in the study of
hydrodynamic fluctuations in nonequilibrium systems is reviewed. Some
results for Rayleigh-Bénard convection measured by a Direct Simulation
Monte Carlo program are presented.

I. INTRODUCTION

One of the early problems to which electronic computers were applied
was the measurement of the statistical properties of fluids.[1] Computer
simulations of particle dynamics are attractive since microscopic details,
such as correlation functions, are available. The first molecular dynamics
(MD) programs dealt with only equilibrium systems but the combination of

new algorithms and advanced computer technology has expanded the field to

include nonequilibrium systems. This work ranges from simple systems
(constant shear or heat flux) to the more recent work in complex flows; these
proceedings present a good sampling of this spectrum: Prof. Hoover shows us
how to work with nonequilibrium systems of no more than three particles; on
the other hand, there are papers describing van Karman vortex shedding
behind an obstacle and Rayleigh-Bénard convection.

Microscopic fluctuations are often studied using Molecular dynamics
(MD) simulations; the characteristic length scale for their correlations is a
few atomic diameters. In experiments, these microscopic fluctuations are
measured by neutron scattering. At larger length scales one enters the

‘hydrodynamic regime where the fluctuations are observable by light

scattering.[2] At equilibrium, the Landau-Lifshitz theory accurately predicts
the experimentally observed spectrum. A few years ago it was realized that in
a highly nonequilibrium system the hydrodynamic correlation functions
would be slightly modified from their equilibrium form. Specifically, it was
predicted [3] (and later observed [4]) that the Brillouin peaks are asymmetric
when the fluid is subjected to a strong temperature gradient. This effect is
caused by the fact that the static density-velocity correlation function,

(3p(r)dv(r')) is nonzero in the presence of the temperature gradient. Several
good reviews of this work have appeared [5,6].
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This paper is divided into two parts. In the first part, I review the use of

particle simulations in the study of hydrodynamic fluctuations in simple
nonequilibrium systems. The latter half of the paper discusses the more
recent work on complex flows, specifically Rayleigh-Bénard convection. An
important branch of simulation work is excluded here: the coupling of
hydrodynamic and chemical fluctuations. This exciting and rapidly
advancing field is discussed, at least partly, in the contributions by Michel
Mareschal and Florence Baras in this volume.

Given the informal atmosphere of the meeting I decided to organize the
review part of the paper around a theme: the hunt for the elusive

(5T(x,1)8T(x',t)) correlation. Since this static correlation is not readily
accessible experimentally, it has been primarily studied by computer
simulation. I have purposely made this a personal account; putting in some
background behind the work and including details not found in the original
papers. It has been my privilege and pleasure to know many of the people
who have worked on these computer simulations; I only hope that the reader
finds the style of the presentation more interesting than distracting.

II THE HUNT FOR THE ELUSIVE (AT(X)AT(X")) CORRELATION

a) Master Equation models

In the early 80's, Prigogine's group began studying thermo-chemical
problems (such as combustion) using the Master Equation formalism.
Gregoir Nicolis and Malek Mansour introduced a simple way of deriving a
Master equation for the one-dimensional thermal conduction problem.[7] The
corresponding Langevin equation is derived using only the properties that a)
in the deterministic limit it reduces to the Fourier law and b) that the
transition rate between states obeys detailed balance at equilibrium. They
obtained the following interesting result; for a fluid contained between
thermal plates at x=0 and x=L, the static correlation of temperature
fluctuations has the form .

kBTg

(BT(x) 8T(x)) = g 8(x-x) + {5T() T(x)} o
where
{(8T(x) 8T(x)} = ’gf’i x (LX) Q)

and x < x"; Cy is the specific heat per unit length, y is the imposed

temperature gradient (y= (AT/L)) and kB is Boltzmann's constant. The first
term on the r.h.s. is the equilibrium contribution to the temperature
fluctuations modified by the fact that the average temperature, To(x), is a
function of location. The term {8T(x) 8T(x")} is the nonequilibrium contribution
to the correlation function; this term is illustrated in Figure 1. Note that this
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FIGURE 1. Sketch of {3T(x)BT(x")} as defined in equation (2).

I was still a graduate student at the University of Texas when Prof,
Nicolis showed me a preprint of that paper. He asked me if it would be

possible to measure {(3T(x)I8T(x")} using a Monte Carlo simulation of the
Master equation presented in the paper.[8] Unfortunately, as they point out in
the paper, the transition rate in their model has some unphysical properties.
The difficulty arises from the approximation that the thermal diffusivity is
strictly constant; only if one includes the (weak) dependance it has on
temperature is a proper transition rate possible.

I was, however, already familiar with another model which did not have
this problem. Nicolis, Baras and Malek-Mansour [9] had derived the Master
equation for a dilute gas when the transport is Knudsen flow between cells.
(Knudsen flow occurs when two containers are connected by an aperture
which is only a few mean free paths in diameter) They derived an expression
for the fluctuations in a single cell connected to two reservoirs at different
temperatures; I had already confirmed this result by a simple Monte Carlo
simulation. Using a similar program with a chain of cells connected by
Knudsen apertures, I observed the long-range, linear correlation of
temperature fluctuations predicted by equation (1).[10] While this result was
encouraging, the Knudsen system was only a curious but unrealistic model.

b) Molecular Dynamics

About the same time that I was getting these results on the Knudsen
system, Michel Mareschal and Eddie Kestemont were visiting Texas for a few
months. They came to study the same problem by a different approach, using
a molecular dynamics simulation of 3000 hard disks under a strong
temperature gradient. Working first on our VAX and then on the Cyber, they
made runs of some 2 million collisions each for various temperature
gradients. The system was only some 220 molecular.diameters in length and
the temperature gradients were very large (g = 108 K/cm). Measurements of
the moments of the local velocity distribution, however, were in very good
agreement with a Gaussian distribution; this shows that local thermal
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equilibrium is maintained even under such extreme nonequilibrium
conditions [11]. . :

Mareschal and Kestemont measured {8T(x) 8T(x')} and found, in
agreement with (1), that the nonequilibrium temperature fluctuations were
proportional to the square of the imposed temperature gradient [12].
Unfortunately, they did not have enough statistics to accurately measure the
spatial dependence of the correlations; i.e. they did not reproduce Figure 1.
The problem is complicated by the slow relaxation of the lowest order modes
in the system. One thing was clear: observation of these subtle effects
required long run times. In my Knudsen flow model, I needed to run for over
108 events to get the correlation function to about 10% error. A few years later,
Lar Hannon would run another MD program and attempt to measure {5T(x)

3T(x")} only to find that even the supercomputer resources at IBM Kingston
were insufficient {13].

¢) Direct Simulation Monte Carlo

While finishing my dissertation, I was trying to find a realistic system for

which I could hope to observe {8T(x)3T(x")}. By chance, my thesis advisor,
Jack Turner, was serving as a consultant on an aerospace project involving
the evaporation of a solid into vacuum. The problem was being studied using
an algorithm called Direct Simulation Monte Carlo (DSMC) method. This
simulation was introduced by G.A. Bird in the early 70's and it is widely used
in rarefied gas dynamics [14]. Turner showed me the problem; lent me a copy
of Bird's book and asked me to look it over.

After learning the algorithm, I realized that the evaluation of collisions is
very similar to the Master Equation formulation of Kac for a homogeneous
gas [15]. However, the motion of the particles is computed deterministically
from their positions and velocities. The two processes are combined by
"splitting”: at each time step the particles are moved and a few undergo
collisions. If the timestep is sufficiently small the DSMC correctly models a
dilute gas (see Prof. Bird's contribution in these proceedings). One of the
main advantages of DSMC is that it runs over 100 times faster than
comparable MD codes. When I came to Brussels in early 1985, I suggested to
Malek Mansour and Michel Mareschal that we try using Bird's method to
measure the nonequilibrium temperature fluctuations.

The initial results from the simulation were very encouraging.[16] The
DSMC reproduced the equilibrium fluctuations perfectly, including the finite
size corrections. In the nonequilibrium system, the peak of the measured
density-velocity static correlation function was linearly proportional to the
temperature gradient, in agreement with theory and light scattering

experiment. [5] Finally, the measured {8T(x)I8T(x")} was in good agreement
with Figure 1 although the error bars were still unsatisfactorily large.

d) Landau-Lifshitz theory

While the Cyber labored away, we began working on the theory using
fluctuating hydrodynamics. The fluctuating Fourier equation is obtained
from the Landau-Lifshitz theory when one assumes that the temperature
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fluctuations are uncoupled from the density and velocity fluctuations. The
solution of this equation for the temperature gradient problem also gives (1)
{17,18]. For a dilute gas, however, the equations for density, velocity and
temperature are coupled making the problem far more complicated.

However, we expected that the results for {3T(x)8T(x")] would be qualitatively
similar.

While much theoretical work had been done on the temperature gradient
problem, most was motivated by light scattering experiments in liquids. Our
computer simulation differed significantly from these experiments in several
ways. (1) The system was extremely small (10 mean free paths) so finite size
effects were very important. (2) To get an observable effect we used an
extremely large temperature gradient. Since our medium was a dilute gas
the density variation was also large. (3) We could measure all hydrodynamic
quantities while light scattering only probed the density-density time
correlation function.

After various attempts to analytically solve the Landau-Lifshitz equations
for a dilute gas, Malek Mansour hit on solving them numerically. Our first
effort was to numerically integrate the fluctuating Fourier equation since we
knew the exact solution. Discretizing in space, the partial differential
equation reduces to a set of ordinary stochastic differential equations.[19] I
remember that we had the simulation of this Langevin equation running in a
few days and good results after about a week. Euphorically confident, we then
tried to write a similar Langevin simulation for the dilute gas equations and
quickly hit an impasse. It was not so easy to properly handle the boundary
conditions; specifically, there could be no boundary condition on the density.

The second attempt at numerically solving the fluctuating hydrodynamic
equations involved using the static correlation equations. For a Langevin
equation of the form,

dc; '
'&% = fi(c1,..cn) + Fi(t) @)

where Fi(t) is a white noise with variance,

<Fjt) Fj(t)> = Qjj d(t - t) “4)
then

d _ oy e . . 1.

3t <cit) ¢j(t)> = <file1,...,en) cj(t)> + 5 Qjj (5)

Applying this identity to the linearized fluctuating hydrodynamic
equations yields a coupled set of equations for the static correlations.[19,20]
Malek noticed that the equation for (8T(x)I8T(x")} is closed without having to
specify any boundary conditions for the density. After discretizing in space,
the problem reduces to solving a set of simultaneous linear equations.

In early 86, Malek and I went to upstate New York as invited scientists. It
was an exciting time to be in IBM Kingston; Lar Hannon had recently found
vortex formation in the flow behind an obstacle and Dennis Rapaport was
beginning to work with him on this problem [21]. Using the 1CAP
supercomputer, we could make new DSMC simulations using much larger
systems (50 mean free paths between the thermal plates).
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As mentioned above, our data from smaller systems (10 mean free paths)
gave temperature correlations as in Figure 1. The larger system showed
richer behavior; the correlations took the form shown in Figure 2. The
agreement with the numerical solution of the correlation equations was
excellent.[20] In fact, we first obtained Figure 2 from the correlation
equations and it was so unexpected we spent a long time trying to find the bug
in the program. Only later, when the DSMC simulation gave the same result
did we realize that we were really observing multimodal behavior.

While in Kingston, Malek resolved the problem of how to numerically
solve the full equations without specifying boundary conditions for the
density. This difficulty with the boundary conditions is overcome by using a
half-grid formulation. The density is specified on grid points which lie
between the grid points for the velocity and temperature. The density grid
contains only interior points (no points on the boundary) so no boundary
conditions are needed for density.

The hydrodynamic correlation functions in the temperature gradient
problem are now well known. The Couette flow problem (constant shear) has
received similar attention and again, the results from DSMC simulations
agree very well with fluctuating hydrodynamic theory.[22] A recent
application of these results has been the testing and validation of Cellular
Automata (CA) simulations. Chopard and Droz developed a two-speed CA
model and measured the hydrodynamic fluctuations in the temperature
gradient problem. Unfortunately, their preliminary results are
inconclusive.[23]

8T8 T(x)}

FIGURE 2. Schematic picture of {3T(x)IBT(x"))) as observed in larger systems.

ITII. RAYLEIGH-BENARD CONVECTION

Recent work has shown that particle simulations may be used to study
complex flow problems. Rayleigh-Bénard convection is a paradigm
instability; at a critical Rayleigh number there is a bifurcation between the
states of purely conductive heat flow and buoyancy-driven convection. [24] The
nature of the hydrodynamic fluctuations near this transition point has been
studied theoretically by a variety of methods.[25] Ahler's group has
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performed several careful experiments and have measured the variation in
the heat flux near the onset of convection.[26] Quantitative comparison,
however, between fluctuating hydrodynamics calculations and laboratory
experiments reveal significant, unaccountable discrepancies.[27]
Furthermore, many theoretical predictions for the fluctuations near the
convective threshold remain untested due to experimental difficulties.

" Mareschal and Kestemont showed that it was possible to observe the
Rayleigh-Bénard instability using Molecular Dynamics [28]; this work has
been duplicated by other groups [29,30]. The observed density, velocity and
temperature fields agree very well with those predicted by the standard
Navier-Stokes equations.[31,32]

The iDSMC method may also be used to study this problem but only at the
expense of working with large systems. The dimensionless number
characterizing the instability is the Rayleigh number,

1,4
vK
where g is the gravitational field, L is the depth of the system, y= AT/Az is the
uniform temperature gradient, a = 1/p [0p/dT]p, is the coefficient of volume

expansion, ¥ is the thermometric conductivity and v is the kinematic
viscosity.

The critical Rayleigh number depends on the boundary conditions at the
walls; in the limit of large aspect ratio the critical Rayleigh number is 1708
for no-slip boundaries and 658 for slip boundaries. In the simulation
described below, I used slip boundaries but the aspect ratio was unity raising
the critical Rayleigh number to about 780.

For a dilute gas, the density profile is a function of the temperature profile
as, p = T-2, where a =1 - mg/kBY, m is the particle mass. Taking the value of

the gravitational field as g = kByY/m the density is approximately constant
throughout the system. The thermometric expansivity, thermal conductivity
and kinematic viscosity may be written as

a=1/T ; v=2/5« 7
10 '
=33 1V 2rkBT/m 8)

where A is the mean free path. From the above

- 122%- (AT/TY2 (LA)2= 0.652 (AT/TY2 (L/AW)2 ©
Even with an extremely strong temperature gradient AT/T will be of order
one; to achieve the critical Rayleigh number one needs a system with a length

of about 35 A (for slip boundaries and an aspect ratio of one). Because the
DSMC method needs about 10 particles per computational cell and that the
cells be no larger than about a mean free path, we need to use over 12,000
particles. This is to be compared with Molecular Dynamics where convection
may be observed in a system as small as 1500 particles.[32]
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I ran a large DSMC simulation with 50,000 particles in a square box 50A x

50\ x 1A in size (i.e. the aspect ratio equals one). The sidewalls are slip,
insulating walls; a particle striking them rebounds elastically. The top and
bottom walls are semi-slip, thermal walls; a particle striking them is
thermalized in the directions perpendicular to the convective flow (y and z
directions) while its velocity in the x-direction is unchanged. Similar
boundary conditions were used by Mareschal and Kestemont in their MD

simulations of Rayleigh-Bénard.[28]
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FIGURE 3. Velocity field from the DSMC simulation of the Rayleigh-Bénard
problem. See the text for the parameters used in the simulation.

The top and bottom temperatures are 0.5 and 2.0, respectively [33].
Because of the temperature jump at the boundary, the effective boundary
temperatures are .636 and 1.874. The gravitational field is g = 0.1; as
mentioned above, the imposed gravitational field is chosen to maintain the
density approximately constant. The Rayleigh number is approximately 1300,
almost twice the critical Rayleigh number. The system was run for about 200
million collisions; a noticeable roll developed after about 40 million collisions.
After about 150 million collisions the system reached a steady state and
statistics were accumulated over the last 40 million collisions. On a SUN
4/260 the program processed about 2.2 million collisions per CPU hour.
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The observed average flow field is illustrated in Figure 3. Note that the roll
is not symmetric since the density is lower in the hot, rising fluid and higher
in the cold, falling fluid. Conservation of mass requires that the hot stream be
wider than the cold stream. [34] The fluid is highly non-Bousinessq; this can
be seen from the fact that the contours of constant density (Figure 4) look very
different from the contours of constant temperature (Figure 5).
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FIGURE 4. Contour plot of the density field from the DSMC simulation of the
Rayleigh-Bénard problem. Compare with Figure 5; note that the isotherms are not
parallel to the isopycnal lines.

The full Navier-Stokes equations for a dilute gas were solved numerically
and the resulting solutions agree closely with the average density, velocity
and temperture fields measured in the DSMC simulation. My earlier DSMC
runs showed only mediocre agreement with the Navier-Stokes integrator
because: 1) I was using half as many particles (only 10 per cubic mean free
path) and 2) I was only thermalizing "the velocity in the direction
perpendicular to the wall. This led to a considerable temperature jump at the
wall. A complete discussion of these results will appear elsewhere.
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FIGURE 5. Contour plot of the temperature field from the DSMC simulation of
the Rayleigh-Bénard problem. Compare with Figure 4; note that the isotherms are
not parallel to the isopycnal lines.

The next step in this research is the study of the hydrodynamic
fluctuations in the Rayleigh-Bénard problem. Due to the considerable
computational effort involved in the simulations it is difficult to get reliable
results to compare with theoretical predictions. Towards this end, Cecile
Penland and I are beginning to use some of the sophisticated data analysis
methods developed in climatology.

ACKNOWLEDGEMENTS

It was my pleasure to collaborate with Michel Mareschal, Malek
Mansour, Florence Baras, John William Turner, Andreas Puhl and Eddie
Kestemont on the work present in this paper. I wish to thank Prof. Prigogine
for his encouragement and insightful suggestions. Special thanks to Malek
Mansour for the use of his Navier-Stokes integrator and for his unsolicited
remarks whenever my programs wouldn't run.

186

REFERENCES

1. Molecular Dynam

G. C.iccotti and W.G. H

Vol. 97 (1987).

2. B.J. BERNE and
York (1976).

3.1. PROCACCIA, I
(1979); T. R. KIRKPAT
Rev. Lett. 44 472 (1980).

4. D. BEYSENS, Y.
(1980).

5. A. M. TREMBL
ics, J.
Verlag, Berlin (1984).
6. R. SCHMIDT, Ph
7. G. NICOLIS and
8. In this paper th
Monte Carlo algoriths
used for any simulatio

9. G. NICOLIS, F.
h i h
Spinger-Verlag, Berlin

10. A. GARCIA, Th
Phys. Lett. 119 379 (198

11. A. TENEBAUV
(1982).

12. M. MARESCHA
13. L.Hannon, priv
14. G.A. BIRD, Mgl

15. M. KAC, in B
Science,Wiley-Intersci

16. A. GARCIA, Ph

17. M. MARESCH.:
A.PACAULT and C.*

18. A. DIAZ-GUILE

19. A. GARCIA, M
J. Stat. Phys. 47 209 (1¢




/

I;Illllll

il

g
{,

I

880
gttt 2 L1 |}

ie DSMC simulation of
that the isotherms are

f the hydrodynamic
to the considerable
lifficult to get reliable
ards this end, Cecile
sticated data analysis

1 Mareschal, Malek
reas Puhl and Eddie
thank Prof. Prigogine
icial thanks to Malek
nd for his unsolicited

REFERENCES

1 III ] D . . ] l. Es! 3 . ']II l 3 ls ’eds
G. Ciccotti and W.G. Hoover, Enrico Fermi Summer School of Physics Series,
Vol. 97 (1987).

2. B.J. BERNE and R. PECORA, Dynamic Light Scattering, Wiley, New
York (1976).

3. 1. PROCACCIA, D. RONIS and I. OPPENHEIM, Phys. Rev. Lett. 42 287
(1979); T. R. KIRKPATRICK, E. G. D. COHEN and J. R. DORFMAN, Phys.
Rev. Lett. 44 472 (1980).

4. D. BEYSENS, Y. GARRABOS and G. ZALCZER, Phys. Rev. Lett. 45 403
(1980).

5. A. M. TREMBLAY, in nt_Devel ilibrium
Thermodynamics, J. Casas-Vasquez, D. Jou and G Lebon Eds Springer
Verlag, Berlin (1984).

6. R. SCHMIDT, Phys. Reports 171 #1 (1988).

7. G. NICOLIS and M. MALEK MANSOUR, Phys. Rev. A 29 2845 (1984)

8. In this paper the term Monte Carlo does not refer to the Metropolis
Monte Carlo algorithm used to study equilibrium ensembles. The term is
used for any simulation with a stochastic element in its dynamics.

9. G. NICOLIS, F. BARAS and M. MALEK MANSOUR, in Nonlinear
Phenomena in Chemical Dvnamics, A. PACAULT and C. VIDAL Eds.,
Spinger-Verlag, Berlin (1981).

10. A. GARCIA, Thesis, The Univ. of Texas at Austin (1984); A. GARCIA,
Phys. Lett. 119 379 (1987).

11. A. TENEBAUM, G. CICCOTI and R. GALLIO, Phys. Rev. A 25 2778
(1982).

12. M. MARESCHAL and E. KESTEMONT, Phys. Rev. A 30 1158 (1984).
13. L.Hannon, private communication.

14. G.A. BIRD, Molecular Gas Dynamics, Claredon Press, Oxford (1976).

15. M. KAC, in Probability Theory and Related Topics in Physical
Science, leey-Intersmence, New York (1959).

16. A. GARCIA, Phys. Rev. A 34 1454 (1 986).

17. M. MARESCHAL, in r nomen mical D
A. PACAULT and C. VIDAL Eds., prnger—Verlag, Berhn (1981).

18. A. DIAZ-GUILERA and J. M. RUBI, Phys. Rev. A 34 462 (1986).

19. A. GARCIA, M. MALEK MANSOUR, G. C. LIE, and E. CLEMENTI,
J. Stat. Phys. 47 209 (1987).

187




20. M. MALEK MANSOUR, A. GARCIA, G. LIE and E. CLEMENTI,
Phys. Rev. Lett., 58 874 (1987).

21.D. C. RAPAPORT and E. CLEMENTI, Phys. Rev. Lett. 57 695 (1987); L.
HANNON, G. C. LIE and E. CLEMENTI, J. Stat. Phys. 51 965 (1988).

22. A. GARCIA, M. MALEK MANSOUR, G. C. LIE, M. MARESCHAL
and E. CLEMENTI, Phys. Rev. A 36 4348 (1987).

23. B. CHOPARD and M. DROZ, Helv. Phys. Acﬁa, 61 893 (1988).

24. S. CHANDRASEKHAR, demdmmm_axﬁﬂmwgﬁmhﬂﬂ
Dover Press, New York (1981).

25. V. M. ZAITSEV and M. I. SHLIOMIS, Sov. Phys. JETP 32 866 (1971);
H.N. W. LEKKERKERKER and J. P. BOON, Phys. Rev. A 10 1355 (1974); T. R.
KIRKPATRICK and E. G. D. COHEN, J. Stat. Phys. 33 639 (1983);
R. SCHMITZ and E. G. D. COHEN, J. Stat. Phys. 38 285 (1985).

26. R. P. BEHRINGER and G. AHLERS, J. Fluid Mech. 125 219 (1982);
G. AHLERS, M. C. CROSS, P. C. HOHENBERG and S. SAFRAN, J. Fluid
Mech. 110 297 (1981); C. W MEYER, G. AHLERS and D. S. CANNELL, Phys.
Rev. Lett. 59 1577 (1987); G. AHLERS, C. MEYER and D. CANNELL, J. Stat.
Phys. 54 1121 (1989).

27. H. Van BEIJEREN and E. G. D. COHEN, Phys. Rev. Lett. 60 1208
(1988); ibid, J. Stat. Phys. 53 77 (1988).

28. M. MARESCHAL and E. KESTEMONT, Nature 323 427 (1986); ibid, J.
Stat. Phys. 48 1187 (1987) and their contribution in these proceedings.

29. D. C. RAPAPORT, Phys. Rev. Lett. 60 2480 (1988) and his contribution
in these proceedings.

30.J. A. GIVEN and E. CLEMENT]I, J. Chem. Phys. 90 7376 (1989).

31. M. MARESCHAL, M. MALEK-MANSOUR, A. PUHL and
E. KESTEMONT, Phys. Rev. Lett. 61 2550 (1988).

32. A. PUHL, M. MALEK-MANSOUR and M. MARESCHAL, Phys. Rev.
A 401999 (1989).

33. The temperature is scaled such that at temperature T=1, the most
probable molecular speed equals one. See reference 14 for more details.

34. I wish to thank Malek Mansour for this comment.

188

A SIMPLE MODEL Ot

M. Malek I
Faculté des

Campus PL

1 INTRODUCTION

For the theoret
ideal laboratory for te
scheme, etc... A nice as
microscopic model, witl
of the boundary condi:
performed which, with:
tures nevertheless som:

" instance, hard sphere ¢

velopment of MD1, A
the trajectory of a sing
studied through MD2.

With the ever g

. been focused recently ¢

ior, such as shock wave
bilities5.6,7, The main }
complex behavior, for w
form. One example is

near an instability thre
for the case of Bénard i
of magnitude between t
hydrodynamics8:9. The
namic instabilities anc
1971, many theoretical

Microscopic Simulations of Complex F
Edited by M. Mareschal, Plenum Press





