
Hybrid or algorithm refinement (AR)
methods facilitate the simulation of
multiscale phenomena (see the
Guest Editors’ Introduction on

page 14). An important consideration when de-
signing hybrid algorithms is how the coupling of
two types of solvers impacts the accuracy of the
individual methods. For the most part, the de-
velopment and testing of these schemes have fo-
cused on the mean behavior of system states,
such as the average density or temperature in a
fluid hybrid. Yet simulations of many systems can
require computing the higher moments (for ex-
ample, variances) of these quantities, which cap-
ture spontaneous fluctuations. This is important
for modeling phenomena in which the micro-
scopic fluctuations drive a macroscopic phe-
nomenon. Fluctuations, for example, initiate the
onset of instabilities and the nucleation of phase
transitions out of a metastable state. 

This article focuses on fluctuations, in particular

how different algorithms treat random variations and
how these fluctuations affect the algorithms’ cou-
pling. Figure 1 shows a molecular simulation coupled
to a continuum hydrodynamic calculation in which
fluctuations of density, temperature, and so on occur
in the former algorithm because of the particles’ ran-
dom motion. Correctly treating fluctuations is espe-
cially important for stochastic, nonlinear systems,
such as those undergoing phase transitions, nucle-
ation, noise-driven instabilities, or chemical reac-
tions. In these and similar applications, the nonlin-
earities can exponentially amplify the fluctuations’
strength and affect the phenomenon of interest.

Accurate simulations of these noise-driven phe-
nomena must ensure that the noise is properly gen-
erated, propagated, and dissipated. The challenge is
that particle and continuum methods treat noise in
completely different ways. In the former, spontaneous
fluctuations are inherent to the particle dynamics, as
the phenomena of Brownian motion and self-
diffusion illustrate. Continuum methods typically rely
on partial differential equations (PDEs), which we can
make stochastic by including the appropriate noise
terms.1 The challenge is ensuring that the numerical
coupling of the particle and continuum computations
doesn’t adversely impact the underlying physics.

Linear Diffusion
We begin by considering simple linear diffusion for
a system modeled by particles (independent ran-
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dom walkers) on the interval x � [0, I ) and by the
linear diffusion equation for the coarse-grained
density �(x) on the remaining interval x � [I, L], as
Figure 2 illustrates. The right interval treats two
cases of the diffusion equation: the deterministic
case and the randomly fluctuating case.

During a time step, the walkers on the left side
of the system move by random displacement. A
handshake region, just right of the interface I, is
filled with particles according to the density of the
leftmost continuum cell. This boundary acts as a
reservoir of particles coupling the continuum re-
gion to the particle region.

Specifying the mass flux across the interface x =
I couples the particle method, in turn, to the con-
tinuum calculation. Particles that “walk” across the
interface during a time step define this flux between
the particle and continuum regions. In addition to
guaranteeing strict mass conservation, this yields
favorable numerical stability.

For the bulk of the continuum region, Fick’s law
F = –D�� gives the mass flux for the deterministic
case. For the stochastic case, we add a random
component to the Fickian flux; this random flux is
white in space and time with variance 2D�.

This simple hybrid uses the same time step in the
particle and discretized continuum regions, and, be-
cause we update the former before the latter, the al-
gorithm requires no separate synchronization (that
is, refluxing) at the time step’s end. In more com-
plicated applications, however, hybrid algorithms
are likely to use much larger time steps in the region
with coarse-grained computations. Then, the re-
searcher should perform refluxing—that is, correct
the density according to the actual flux across the
interface—when synchronizing the two regions.2

To analyze this relatively simple hybrid’s ro-
bustness and accuracy, we conducted various
computational experiments for both steady-state
and time-dependent diffusion.3 Although we’ve
dealt with various boundary conditions, here we
focus on deterministic Dirichlet boundary con-
ditions � = �0 prescribed at x = 0 and x = 1. Be-
cause of the system’s linear nature, both deter-
ministic and stochastic hybrids capture the mean
behavior correctly.

Figure 3 shows that the deterministic hybrid sig-
nificantly underestimates the density variance, ex-
cept in the particle region (x � [0, I )), well away
from the interface x = I. This result is not entirely
unexpected as there is no way to maintain fluctua-
tions in the deterministic PDE region. On the
other hand, the stochastic hybrid is within a statis-
tical error of the variance’s expected value,  ���2

i;n�
= �0/�x (that is, the Poisson distribution). Note that

the density variance doesn’t reduce the fluctuations
in the cells near the Dirichlet boundary (where �1;n
is fixed) for either the deterministic or stochastic-
PDE hybrids.

These results clearly illustrate that even for a
simple linear phenomenon, such as Fickian diffu-
sion, hybrid methods require that researchers pay
special attention to the implementation details.
These range from the obvious, such as the depen-
dence of time-dependent density on the specific
particle initialization process, to the nontrivial,
such as the dependence of a mean solution on the
statistical distribution (for example, uniform or
Poisson distributions) of particles used to fill the
handshake region.

The very different constructions (discrete versus
continuum) of the two algorithms complicate the
mathematical analysis of AR hybrids. However, if
a stochastic continuum solver couples transparently
to a particle algorithm, we can use the former in
place of the latter. That is, to analyze a hybrid that
couples a particle scheme with a deterministic con-
tinuum scheme, we replace the particle dynamics

(a) (b)

Figure 1. Example of a particle/continuum adaptive mesh algorithm
refinement (AMAR) hybrid computation. (a) Pressure distribution for an
impulsively started cylinder moving at Mach 2. (b) The simulation uses a
hydrodynamic partial differential equation (PDE) solver everywhere
except around the cylinder, where it performs a direct simulation
Monte Carlo (DSMC) calculation.

x = 0 x = L 

�i�1 �M

∆x
I

Figure 2. Algorithm refinement for simple diffusion. The region on the
left shows a Monte Carlo random walk simulation, and the region on
the right illustrates a PDE solver. The methods are coupled at the
interface I; the algorithm generates new particles (open circles) in the
handshaking region (right) and at the Dirichlet boundary (left).
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with the corresponding stochastic diffusion equa-
tion in the region x � [0, I ) while retaining the de-
terministic diffusion equation in the region x � [I,
1]. We refer to this method as a half-stochastic hy-
brid.3 Such a model is ideally suited for testing the
effects of noise in hybrids because we’re coupling
two systems of the same type (both PDE solvers).
Our studies indicate that the results from these
half-stochastic hybrids are similar to particle/
deterministic-continuum AR hybrids and far more
amenable to theoretical analysis.

Particle/continuum AR hybrids could accurately
model hydrodynamic fluctuations in Fickian diffu-
sion when the appropriate stochastic PDE is used.
However, this only gives us confidence in the
methodology for linear systems. We therefore ex-
amine a more complicated model for which the
noise amplitude is nonlinear.

Train Model
We generalize our analysis by considering a non-
linear system that intrinsically has long-range spa-
tial correlations due to the nonlinearity of its sto-
chastic fluxes. Specifically, we analyze a train
model of viscous transport in a gas.4 The train
model falls into a general class of random walk
models that exhibit these long-range correlations.
Other models of this class include lattice gases5

and the Knudsen chain.6 These long-range cor-
relations are generic to realistic hydrodynamic
systems, as various theoretical approaches predict
and numerical simulations and laboratory exper-
iments confirm.7–9

One train model formulation4 considers two rail-
road cars traveling on parallel tracks with initial
velocities va and vb. The train cars initially have Na
and Nb passengers, respectively; the passengers
have mass m whereas the mass of the cars is negli-
gible. Passengers jump at random between the
trains at a rate 1/�, where � is the mean free time
between a passenger’s jumps to an adjacent train.
The jumps from train a to train b result in the ex-
change of momentum mva, which preserves the ve-
locity of train a, va� = va, and modifies the velocity
of train b, vb� = Nbvb /(Nb + 1) + va/(Nb + 1). Over a
long time period, this random process reaches a
steady state in which the mean number of passen-
gers on each train car is (Na + Nb)/2, and the mean
velocity is (Nava + Nbvb)/(Na + Nb).

A generalized formulation of the train model10

includes a set of cars on M parallel tracks (see Fig-
ure 4). Passengers on the trains jump left or right
with equal probability, as in the unbiased random
walk. Adjacent to the first and last tracks are plat-
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Figure 3. Density variance in the open equilibrium system. (a) Variance for cell ���2
i;n� using the stochastic hybrid, and (b)

variance for cell Gi,i = ���2
i;n� using the deterministic hybrid (the same variance we’d find had the entire simulation been done

using particles). The dashed line indicates particle/PDE interface; the solid line is ���2
i;n� = �0/�x.

...

i0 M

vi

Figure 4. Schematic illustration of the train model,
with M trains and two platforms. A passenger on
train i – 1 jumps to train i, changing its velocity vi.
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forms moving with constant numbers of passen-
gers N0 and NM+1, at constant velocities v0 and
vM+1. These platforms act as reservoirs of passen-
gers who jump at half the rate of train passengers
because they can only jump in one direction. Start-
ing from an initial state, a random passenger is
chosen to jump in a random direction. A passen-
ger jumping onto a train changes that train’s ve-
locity. If the passenger jumps from a platform onto
a train, a new passenger is added to the system;
vice versa, a passenger is removed. After each
jump, the time is advanced by (�/N�)�e, where N�

is the total number of passengers in the system,
and �e is an exponentially distributed random
number. Florence Baras and colleagues discuss a
numerical implementation of this particle (random
walk) algorithm.10

A system of PDEs for the mass density �(x, t) and
the fluid momentum p(x, t) gives a continuum de-
scription of the generalized train model

(1)

where F is the mass flux, G is the momentum flux,
and v = p/� is the fluid velocity. We establish the
correspondence between these two descriptions by
discretizing Equation 1 with, for example, finite
differences

(2)

where �i;n = �(xi, tn) with xi = (i – 1/2)�x for i � [1,
M], and tn = n�t for n = 0, 1, 	. The superscript
+ (or –) indicates that the flux is through the side
between cells i and i + 1 (or i – 1), and the super-
script 
 (or �) indicates that the term is the flux
contribution caused by particles moving left to
right (or right to left). If a grid point xi is associ-
ated with a single discrete train i, then Ni =
�i�x/M. For the mass density, the train model is
equivalent to the linear diffusion model because
the dynamics of the random walkers are inde-
pendent of the trains’ velocities. The equation for
the momentum is similar to Equation 2, with the
momentum flux directly linked to the mass flux
as G = vF.

The boundary conditions fix the density and
velocity of the first and last grid points (that is, a
platform). In the particle simulations, the system
immediately replenishes (or removes) the last

grid point with particles as they leave (or enter).
In the continuum simulations, we prescribe either
a velocity gradient only, or both density and ve-
locity gradients. The case of a density gradient
only is equivalent to our earlier study of simple
diffusion.

An AR hybrid consists of a coupling of the par-
ticle and continuum descriptions, as Figure 5
shows. The particle and continuum simulations
occur to the left and right of the dashed line, re-
spectively. For simplicity, we take the continuum
grid spacing �x equal to the particle grid spacing
(width of a train). We executed the simulations in
108 steps using a time step of �t = �tmax/20 =
0.025, which is enough for solutions to reach
steady state.

Similar to the linear diffusion analysis, we con-
sider the deterministic and stochastic hybrids that
are constructed by having the continuum solver
use deterministic or stochastic currents, respec-
tively. Because of the train model’s weakly nonlin-
ear nature, both deterministic and stochastic hy-
brids correctly capture the mean profiles of density
��(x)� and velocity �v(x)�. Differences in the two
hybrids’ performance manifest in the higher sta-
tistical moments of � and v—specifically, their
variances and correlations.

Figure 6 demonstrates that the stochastic hybrid
accurately reproduces the correlation of velocity

ρ ρi n i n i n i n i n i n

t

F F F F; ; ; ; ; ;+
+→ +← −→ −−

= −
−( ) − −1

∆

←←( )
∆x

,

∂
∂

= − ∂
∂

p
t

G v
x

( , )
,

ρ

∂
∂

= − ∂
∂

ρ ρ
t

F
x
( )

,

Particles Continuum

 I I� , v

N
v

 I-1

I-1
Create

particles

Return
fluxes

Boundary
condition

Boundary
condition

Figure 5. Algorithm refinement hybrid for the train
model. We use particle simulation in the region on
the left (from 0 to I – 1) and a PDE solver on the right
(I to M), coupling the methods at the interface. The
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fluctuations when both velocity and density gradi-
ents exist. These results indicate that the AR hybrid
with stochastic fluxes correctly captures the long-
range nature of these nonequilibrium fluctuations.
This result is significant because these long-range
correlations are generic to hydrodynamic systems
out of global equilibrium.7

Figure 7 shows the same quantities computed
with the deterministic hybrids. The absence of
noise in half the system (the deterministic PDE
side) roughly reduces by half the amplitude of ve-
locity correlations ��vi�vj�, yet the correlations are
still long-ranged, spanning the system’s length.

This result contrasts the findings in our linear dif-
fusion study. In that study, we showed that the vari-
ance of density fluctuations �(��i)2� goes quickly to
zero in the simulation’s deterministic region. No
contradiction exists, however, because the long-
range nature of hydrodynamic correlations is not
due to the presence of noise throughout the system.
Rather, the hydrodynamic transport propagates the
correlation, and the hybrid correctly computes it.
In other words, local fluctuations are produced in
the particle region and propagated by the hydro-
dynamic transport, which is purely viscous in the
train model, to produce the correlations.

In brief, the effect of long-range correlations is
still present, albeit at a reduced amplitude, even
if only one part of the hybrid is stochastic. On
one hand, this result is good news because it
means that even when using a deterministic PDE
solver, which is far more common for AR hybrids,
we can preserve some of the qualitative features
of long-range correlations. On the other hand,
reducing (or for that matter, enhancing) the fluc-
tuations by a factor of two can greatly alter time-

dependent behavior. This is a serious concern for
modeling noise-driven phenomena where fluctu-
ations and their correlations are often exponen-
tially amplified (first-passage time problems,
spontaneous transitions at unstable points, ex-
plosive ignition, and so on). Clearly, the nature of
the physical process and the relative importance
of fluctuations to the correct modeling of that
process govern the construction of stochastic and
deterministic AR hybrids.

Reducing the density variance in the
particle region when coupled with a
deterministic PDE necessitates plac-
ing the interface further away from

regions in which the algorithm requires accu-
rate fluctuations. Not taking such measures can
have a deleterious effect when using a deter-
ministic PDE solver in hybrids that simulate
strongly interacting systems (for example, non-
equilibrium solids and dense liquids). Our study
focused on static (that is, equal-time) correla-
tions of velocity fluctuations because they’re
long-range when the system is out of equilib-
rium, a generic feature of fluctuating hydro-
dynamics.7 Hybrids that capture static
correlations correctly should successfully re-
produce dynamic correlations because the latter
are given by the former plus hydrodynamic
transport. That said, it would still be interesting
to confirm this expectation by measuring time-
dependent correlations in AR hybrids and com-
paring the results with pure particle systems.
For some physical problems, generating time-
dependent fluctuations and correlations cor-
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Figure 6. Results for stochastic hybrid. Velocity–velocity correlation ��vi�vj� as functions of position i for (a) j = 6 and (b) j = 15.
The solid line is the theoretical result.
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rectly will be crucial for accuracy.
Our future work will focus on strongly nonlin-

ear systems. We’re currently investigating AR hy-
brids that combine the fluctuating Burger’s equa-
tion and the Landau fluctuating Navier-Stokes
equations with corresponding particle algorithms
(for example, DSMC for the latter).

For highly nonlinear equations or for systems
with more general multiplicative noises, deter-
ministic hybrids aren’t guaranteed to yield mean
values that are correct across the coupling inter-
face, even in equilibrium. These cases require spe-
cial care in constructing the hybrid; renormalized
noises or effective potentials (from which we de-
rive the PDE) might prove useful. This is likely to
play an important role in nonlinear time-
dependent Ginzburg-Landau models of solids and
is currently under investigation.
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