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We develop numerical methods for reaction-diffusion systems based on the equations
of fluctuating hydrodynamics (FHD). While the FHD formulation is formally described
by stochastic partial differential equations (SPDEs), it becomes similar to the
reaction-diffusion master equation (RDME) description when those SPDEs are
spatially discretized and reactions are modeled as a source term having Poisson
fluctuations. However, unlike the RDME, the FHD description naturally extends
from the regime where fluctuations are strong, i.e., each hydrodynamic cell has few
(reactive) molecules, to regimes with moderate or weak fluctuations, and ultimately to
the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction
on time step size that limits all methods based on explicit treatments of diffusion,
and construct numerical methods that are more efficient than RDME methods, without
compromising accuracy. Guided by an analysis of the accuracy of the distribution of
steady-state fluctuations for the linearized reaction-diffusion model, we construct several
two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic
Crank–Nicolson method, and reactions are handled by the stochastic simulation
algorithm of Gillespie or a weakly second-order tau leaping method. We find that
an implicit midpoint tau leaping scheme attains second-order weak accuracy for the
linearized FHD, and gives an accurate and stable structure factor for a time step size an
order of magnitude larger than the hopping time scale of diffusing molecules. We study
the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in
and out of thermodynamic equilibrium. We demonstrate and quantify the importance of
thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern,
and examine the effect of fluctuations on three-dimensional chemical front propagation.
By comparing FHD simulations to deterministic reaction-diffusion simulations, we
show that fluctuations accelerate pattern formation in spatially homogeneous systems,
and lead to a qualitatively-different disordered pattern behind a traveling wave.



2

I. INTRODUCTION

While deterministic reaction-diffusion models have been successfully applied to explain various
spatiotemporal phenomena such as pattern formation, and to gain insight into nonequilibrium
phase transitions, it is now widely appreciated that spatiotemporal fluctuations in the concen-
tration of chemical species play an essential role. Such internal or thermodynamic fluctuations,
which arise from both reaction and diffusion processes, have molecular origin; microscopically,
those processes occur through the movement and collision of individual molecules under thermal
fluctuations. Hence, the deterministic macroscopic description eventually fails at smaller scales
where the fluctuations are significant, and a stochastic mesoscopic description is needed. Ex-
amples include fluctuation-induced instabilities [1], reversal of direction of front propagation [2],
violation of the law of mass action [3], long-time tails in kinetics [4], emergence of new steady
states [5] and patterns [6], and acceleration of pattern formation [7]. Due to a small number of
proteins involved in cellular functions [8], processes in cell biology are good examples [9–12] where
the stochastic reaction-diffusion description provides an indispensable modeling tool [13, 14].

A microscopic picture of reaction-diffusion, dating back to Smoluchowski [15], assumes that
molecules undergo independent Brownian motions and reactions can occur only when two
molecules are close to each other. Based on this picture, the particle-based approach to simulate a
reaction-diffusion system tracks the trajectories of diffusing molecules and uses the intermolecular
distance to determine whether a reaction occurs. Exact sampling of the Smoluchowski model can
be performed by first-passage kinetic Monte Carlo type algorithms [16–18]; approximate reactive
Brownian dynamics using a fixed time step size forms another class of algorithms [19, 20].
While molecular schemes, such as molecular dynamics (MD) and direct simulation Monte Carlo
(DSMC), can be used for reaction-diffusion problems [21, 22], they are computationally even
more expensive. Hybrid methods combining particle and coarse-grained descriptions, either
using operator splitting [23] or domain decomposition [24, 25], have also been proposed.

For the mesoscopic description of a reactive system, the master equation approach is commonly
used. For a well-mixed (i.e., spatially homogeneous) system, the time evolution of the system
(i.e., the number of molecules of each chemical species) is described by the chemical master
equation (CME). Exact sampling of the CME can be performed by the stochastic simulation
algorithm (SSA) of Gillespie [26], whereas the tau leaping method [27] can be employed as
an approximate algorithm with a given time step size. Several variants of these methods have
been proposed [28, 29]. For a spatially inhomogeneous system, the time evolution of the system
is commonly described by the reaction-diffusion master equation (RDME), which is also known
as the multivariate master equation [30, 31]. In this approach, the system is divided into
homogeneous subsystems or cells and the number of molecules of each chemical species in each
cell is tracked. Changes in the molecule numbers occur either through hopping events of a
molecule between adjacent cells or though chemical reactions within a cell. Hopping events
correspond to diffusive transport and are treated as first-order reactions. Since the RDME
is a spatial extension of the CME, exact sampling of the RDME can be performed by SSA-type
algorithms [32, 33], which are called inhomogeneous SSA (ISSA).

While conceptually simple and still widely used [6, 7], the traditional approach of solving the
RDME by ISSA has the computational issue that the method becomes prohibitively slow as
the number of molecules or cells increases. Since the cell volume should be chosen sufficiently
small to ensure homogeneity over each cell, large, finely-resolved grids are required for two-
or three-dimensional problems. As the spatial resolution increases, the time interval between
successive events becomes very short due to rapid diffusive transfer, and hopping events
greatly outnumber reaction events, which slows down ISSA [28]. Several approaches have been
proposed to improve the performance of stochastic sampling of the RDME, such as the next
subvolume method [33] and its parallel simulation version [34]. Various implementations of the
tau leaping method in a spatial context [35–37], and the time-dependent propensity for diffusion
method [38], have also been proposed. A more aggressive approach to reduce the computational
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cost by avoiding the sampling of the individual diffusion events is to split diffusion and
reaction in each time step and to treat diffusion in a more efficient manner. Various sampling
methods for diffusion have been proposed, including the Gillespie multi-particle method [39],
the multinomial simulation algorithm [40], the adaptive hybrid method on unstructured
meshes [41, 42], and the diffusive finite-state projection algorithm [43, 44].
In this paper, we propose a fluctuating hydrodynamics (FHD) approach for numerical simulation
of stochastic reaction-diffusion systems. To incorporate the effects of thermal fluctuations
in a fluid, in FHD one assumes that the dynamics of the fluid can be described by the usual
hydrodynamic equations (e.g., the Navier–Stokes equations), augmenting each dissipative flux
with a stochastic flux [45]. Those stochastic fluxes are modeled by spatiotemporal Gaussian
white noise (GWN) and the resulting governing equations are written as stochastic partial
differential equations (SPDEs). FHD was originally developed for equilibrium fluctuations
by Landau and Lifshitz [46] and its validity has been justified for nonequilibrium systems [47]
through the theory of coarse graining [48]. Various extensions and generalizations of the theory
have been developed and successfully applied to fluctuation-induced phenomena. Recent work
by the authors has focused on FHD models of hydrodynamic transport [49, 50] in binary
fluid mixtures [51, 52], multiphase flows [53], multispecies fluid mixtures [54, 55], multispecies
reactive mixtures [56], and electrolytes [57].
Compared to our previous work [56], where the coupling effects of fluid hydrodynamic and
chemical fluctuations have been investigated, here we focus on reaction and diffusion and neglect
all other hydrodynamic processes (advection, viscous dissipation, thermal conduction, and cross
term effects). Rather than using a Langevin description (i.e., based on Gaussian fluctuations) of
chemistry, which is only valid in the limit of vanishing fluctuations [56], here we employ a more
accurate description of reactions based on Poisson fluctuations. As pointed out in Ref. [48],
even though a formal SPDE description is employed, the actual interpretation of FHD always
requires the notion of a coarse-graining over a certain length scale. The FHD equations are
discretized using a finite volume approach [58, 59] that represents the solution in terms of
the average over cells, which provides an effective coarse-graining. Therefore, reactions can be
treated in a similar manner to the RDME approach when the SPDEs are spatially discretized,
and integrated in time using SSA or a weakly second-order tau leaping method [60, 61].
The key difference between the FHD and RDME descriptions lies in the more efficient treatment
of fast diffusion. A number of approximate numerical methods for the RDME [39–44] are
based on operator splitting using first-order Lie or second-order Strang splitting [62]. In
Appendix A we review and discuss in more detail a split scheme that uses multinomial diffusion
sampling [63] for diffusion and SSA for reactions. These RDME-based schemes use a time
step size ∆t comparable to the hopping time scale τh = ∆x2/(2dD) with d being the spatial
dimension, ∆x being the grid spacing, and D being a typical diffusion coefficient. Even
though τh is much larger than the mean duration between successive events in ISSA, using
∆t comparable to τh is still very restrictive for large D or small ∆x. In our FHD formulation,
we treat diffusion implicitly using backward Euler or Crank–Nicolson, so that the time step
size can be significantly larger than the hopping time scale.
While the development of numerical schemes for stochastic reaction-diffusion systems described
by spatiotemporal GWN dates back to the 1990s [64, 65], much of the prior work has not been
guided by numerical analysis or extensive experience from deterministic computational fluid
dynamics (CFD). With the help of well-established techniques for numerical solution of PDEs
and SPDEs, we construct numerical schemes in a systematic manner to ensure accuracy is
maintained for a large time step size. To this end, we employ two-stage (i.e., predictor-corrector)
Runge–Kutta temporal integrators [59, 66]. Rather than using operator splitting, we treat
reaction and diffusion together in each stage in a manner that is second-order weakly accurate
for general linearized FHD equations. The construction of these schemes is guided by a
stochastic accuracy analysis of the static structure factor for linearized FHD [58, 59].
The FHD approach inherently outperforms the RDME approach as the number of molecules per
cell increases in exactly the same way that multinomial diffusion outperforms diffusion by hop-
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ping, or tau leaping outperforms SSA. In fact, the computational cost of FHD methods does not
significantly change as the magnitude of the fluctuations changes. This is an obvious advantage
of the FHD approach since the macroscopic limit cannot be efficiently simulated by the RDME
approach. However, the validity of the FHD approach cannot be taken for granted when there
are only a small number of molecules in each cell, since in FHD the number of molecules in each
cell is a continuous real-valued variable, rather than a discrete nonnegative integer variable as in
the RDME. We investigate this issue carefully and propose techniques to improve the accuracy of
the FHD description for the case of a small number of molecules per cell, making our numerical
schemes robust even for large fluctuations. In particular, we develop a spatial discretization
that significantly mitigates nonnegativity of the species number densities and closely reproduces
the Poisson thermodynamic equilibrium distribution for the number of molecules in a cell.
The rest of the paper is organized as follows. Section II presents the background for our
approach, including the FHD description of reaction-diffusion systems and linearized analysis in
a Gaussian approximation. Section III explains how the FHD reaction-diffusion equations can
be spatially discretized using a finite-volume approach. Section IV presents temporal integrators
for the spatially discretized equations that handle diffusion using existing FHD techniques,
and treat reactions using SSA or second-order tau leaping. Section V presents simulation
results of several reaction-diffusion systems. In Section V A, for testing and validation of our
numerical schemes, we use a one-species Schlögl model [67, 68]. In Section V B, to compare our
methods to each other and to RDME-based methods, we study two-dimensional Turing-like
pattern formation in the three-species Baras–Pearson–Mansour (BPM) model [69, 70]. In
Section V C, to demonstrate the ability of our approach to scale to larger systems, we present
numerical simulation results for three-dimensional front propagation in a two-species model [7].
In Section VI, we offer some concluding remarks and suggest future research directions.

II. BACKGROUND

In Section II A, we present the continuous-time continuous-space FHD description of reaction-
diffusion systems. Here, we assume that fluctuations in chemistry are described by GWN (i.e.,
Langevin type). A more accurate description of chemistry based on Poisson fluctuations is incor-
porated in the continuous-time discrete-space description in Section III. In Sections II B and II C,
we introduce the structure factor and the Schlögl reaction-diffusion model, respectively. As one
of the criteria for the development and analysis of numerical schemes, later in the paper we in-
vestigate how accurately a numerical scheme produces the structure factor for the Schlögl model.
In this section, we introduce several GWN vector and scalar random fields and denote them
by Z(x, t) = (Z1(x, t), . . . ,Zd(x, t)) and Z(x, t), respectively, with additional superscripts to
distinguish the different fields. We assume that any two distinct processes are independent and
that the noise intensity of each process is normalized, 〈Zj(x, t)Zj′(x

′, t′)〉 = δjj′δ(x−x′)δ(t−t′)
and 〈Z(x, t)Z(x′, t′)〉 = δ(x − x′)δ(t − t′). Similarly, we denote GWN vector and scalar
random processes by W(t) and W(t), respectively, and assume 〈Wj(t)Wj′(t

′)〉 = δjj′δ(t− t′)
and 〈W(t)W(t′)〉 = δ(t− t′).

A. FHD Description

We consider a reaction-diffusion system having Ns species undergoing Nr reactions in d-
dimensional space. By denoting the number density of species s by ns(x, t), the equations
of FHD for n(x, t) = (n1(x, t), . . . , nNs(x, t)) are written formally as the SPDEs [56]

∂

∂t
ns = ∇·

(
Ds∇ns +

√
2DsnsZ(D)

s

)
+

Nr∑
r=1

νsr

(
ar(n) +

√
ar(n)Z(R)

r

)
, (1)
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where Ds is the diffusion coefficient of species s, ar(n) is the propensity function indicating
the rate of reaction r, and νsr is the stoichiometric coefficient of species s in reaction r.
In the macroscopic limit of vanishing fluctuations, Eq. (1) approaches the deterministic
reaction-diffusion PDE (law of large numbers),

∂

∂t
ns = Ds∇2ns +

Nr∑
r=1

νsrar(n). (2)

We explain below how the diffusion and reaction parts are obtained by considering the
diffusion-only (i.e., no-reaction) and reaction-only (i.e., well-mixed) cases.

1. Diffusion

The diffusion-only SPDE

∂

∂t
ns = ∇·

(
Ds∇ns +

√
2DsnsZ(D)

s

)
(3)

can be justified by considering a microscopic system where each molecule i undergoes
independent Brownian motion,

ẋs,i =
√

2DsWs,i. (4)

In this formal derivation [71], one defines the instantaneous number density field ns(x, t) =∑
i δ(x−xs,i(t)) and uses Ito’s rule to obtain Eq. (3). This equation can also be obtained from

the diffusion portion of the general multispecies FHD equations [55, 56], given by nonequilibrium
statistical mechanics [72], by assuming a dilute solution and considering only solute species.
In addition, the linearized version of Eq. (3) can be obtained from the multivariate master
equation model (i.e., diffusion by hopping) near the macroscopic limit [30]. However, although
relations to those equations reaffirm Eq. (3) near the macroscopic limit, it is important to note
that Eq. (3) is formally exact even in the case where fluctuations are large, since it is simply a
rewriting of Eq. (4), in a representation in which the particle numbering (identity) is lost [73].
We note that the FHD equations (1) and (3) are not mathematically well-defined because the solu-
tion needs to be interpreted as a distribution (or a generalized function), and the square root of a
distribution is not well-defined in general. The linearized FHD equation does not suffer from such
an issue and is well-defined; the problems arise due to the multiplicative noise in Eq. (3). However,
even though Eq. (3) is ill-defined, it is formally consistent with the law of large numbers (given
by the deterministic reaction-diffusion equation (2)), the central limit theorem (given by the lin-
earized FHD equations (11)), and large deviation theory for a collection of Brownian walkers. In
this sense, Eq. (3) is a meaningful representation of the physical model that is useful in construct-
ing well-defined mesoscopic descriptions via spatial discretization of the formal SPDEs. Com-
pared to obtaining a mesoscopic model by directly coarse-graining the microscopic model, the spa-
tial discretization of the SPDE is easier in general, and can be done in a systematic manner [74].

2. Reaction

To see how the reaction part of Eq. (1) is obtained, consider a well-mixed system with volume
∆V . By assuming that the time evolution of n(t) follows the CME, we express the change
over the infinitesimal time interval dt as follows [28]:

dns = ns(t+ dt)− ns(t) =
1

∆V

Nr∑
r=1

νsrP(ar(n)∆V dt), (5)
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where P(m) denotes a Poisson random variable having mean m. Note that Eq. (5) is equivalent
to the CME if interpreted in the Ito sense. The specific form of the chemical rate function
ar(n) that we use in this work is described in Section III C. Henceforth, we will formally
write (5) in the differential form,

d

dt
ns =

Nr∑
r=1

νsrP(ar(n)∆V dt)

∆V dt
. (6)

For a more mathematically precise representation, see Refs. [75, 76].
The chemical Langevin equation (CLE) [77] is obtained under the assumption that the mean
number of reaction occurrences is large [28]. That is, the assumption enables one to replace
P(m) by a Gaussian random variable having the same mean and variance, to give the CLE

d

dt
ns =

Nr∑
r=1

νsr

[
ar(n) +

√
ar(n)

∆V
Wr

]
. (7)

Since reaction is assumed to be local, the reaction part of Eq. (1) is obtained from spatial
extension of Eq. (7).
One of the important conclusions of our previous work [56] was that the Langevin description
(7) is not consistent with equilibrium statistical mechanics. Alternative formulations based on a
Langevin diffusion description [78, 79] that are consistent at thermodynamic equilibrium fail to
correctly model relaxation toward equilibrium [56]. Instead, in order to correctly capture both
small fluctuations and large deviations in equilibrium and non-equilibrium contexts, one must
retain a description of chemical reactions as a Markov jump process. That is, one must describe
reactions using a stochastic differential equation driven by Poisson rather than Gaussian noise.

B. Structure Factor

The structure factor (spectrum) Ss(k) = V
〈
δn̂s,kδn̂

∗
s,k

〉
is the variance of the Fourier mode

of the number density of species s,

n̂s,k(t) =
1

V

∫
ns(x, t)e

−ik·xdx, (8)

where we have assumed a periodic domain of volume V , and defined δn̂s,k = n̂s,k − 〈n̂s,k〉,
where the brackets 〈 〉 denote the equilibrium average. Here we derive an analytic expression
of the structure factor from the linearized FHD equation. We assume that there is only one
species, Ns = 1, and drop the subscript s for species, to write Eq. (1) as

∂

∂t
n = D∇2n+ ∇·

(√
2DnZ(D)

)
+ a(n) +

√
2Γ(n)Z(R), (9)

where

a(n) =
Nr∑
r=1

νrar(n), Γ(n) =
1

2

Nr∑
r=1

ν2
rar(n), (10)

and we have expressed fluctuations arising from all reactions by a single GWN field Z(R). At a
spatially uniform stable steady state, n(x, t) fluctuates around mean number density n̄ ≡ 〈n〉,
where a(n̄) = 0 and a′(n̄) < 0. The linearization of Eq. (9) around this equilibrium state is
given by the central limit theorem,

∂

∂t
n = D∇2n+

√
2Dn̄∇·Z(D) − r(n− n̄) +

√
2Γ̄Z(R), (11)
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where r = −a′(n̄) > 0 is the effective reaction rate near equilibrium and Γ̄ = Γ(n̄).
The Fourier transform of Eq. (11) gives

d

dt
δn̂k = −Dk2δn̂k +

√
2Dn̄ ik · Ẑ(D)

k − rδn̂k +
√

2Γ̄Ẑ(R)
k . (12)

Since Eq. (12) has the form of the Ornstein–Uhlenbeck equation, the structure factor is easily
obtained as

S(k) =
Dn̄k2 + Γ̄

Dk2 + r
=
n̄k2 + Γ̄/D

k2 + `−2
, (13)

where ` =
√
D/r denotes the penetration length. From Eq. (13), we observe that there are two

limiting cases. In the small wave number limit k`� 1, S(k) becomes Γ̄/r and does not depend
on diffusion. In fact, the result S(0) = Γ̄/r is also obtained from the CME assuming the whole
system is well-mixed. On the other hand, in the large wave number limit k`� 1, S(k) becomes
n̄, which is the result for the diffusion-only system. Hence, fluctuations are reaction-dominated
at a length scale larger than ` and are diffusion-dominated at a length scale smaller than `.
We also observe that if the system is in detailed balance at its steady state, i.e., it is in
thermodynamic equilibrium, then Γ̄ = n̄r and S(k) = n̄, consistent with a product Poisson
distribution with mean number density n̄. Therefore, in true thermodynamic equilibrium
the statistics of the fluctuations are independent of any kinetic parameters, as they must
be according to equilibrium statistical mechanics [80]. In particular, the presence of the
reactions does not change the Poisson statistics of the state of thermodynamic equilibrium.
In Section V A, we use this property to judge the quality of numerical schemes.

C. Schlögl Model

The Schlögl model [67, 68] is given by the chemical reactions for species X,

2X
k1


k2

3X, ∅
k3


k4

X. (14)

Hence, we have Ns = 1, Nr = 4, ν1 = ν3 = 1, ν2 = ν4 = −1, a(n) = k1n
2 − k2n

3 + k3 − k4n,
and Γ(n) = 1

2
(k1n

2 + k2n
3 + k3 + k4n). Due to the cubic nonlinearity of a(n), the well-mixed

system exhibits several kinds of distributions depending on the values of the rate constants. If
detailed balance is satisfied, that is, k1n

2
eq = k2n

3
eq and k3 = k4neq, the system is in thermody-

namic equilibrium and the distribution follows Poisson statistics with mean number density neq.
Otherwise, depending on the number of real roots of a(n) = 0, the system exhibits a monostable
distribution (for a single positive root) or a bistable distribution (for three positive roots) [68].
The structure factor of the spatially extended Schlögl model can be calculated from Eq. (13).
As expected from the fact that the equilibrium distribution of the system follows Poisson
statistics, S(k) = neq in the case of thermodynamic equilibrium. Note, however, that having
a monostable distribution does not imply thermodynamic equilibrium. The structure factor
of the out-of-equilibrium monostable case is not flat but exhibits a transition near k` ∼ 1. For
the bistable case exhibiting metastability, the linearized theory is still applicable if one looks
at fluctuations around one of the two peaks. However, in this work we focus on the equilibrium
and out-of-equilibrium cases where a(n) has a single positive root.

III. SPATIAL DISCRETIZATION

In this section, we discuss spatial discretization of the FHD equation using a finite-volume
approach [58, 59] that converts the SPDE into stochastic ordinary differential equations (SODEs)
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FIG. 1. Finite-volume spatial discretization in two dimensions. The cell-averaged number density
ns,i(t) is associated with the circles, and the face-averaged stochastic diffusive flux is associated
with the crosses. The stochastic diffusive flux between the two cells having the red circles at center
is depicted by the blue arrow.

for the cell number density ns,i(t). We develop numerical schemes to solve these SODEs in
Section IV. In Section III A, we first discretize the diffusion-only SPDE (3). In Section III B, we
add reactions and present the continuous-time discrete-space description of the reaction-diffusion
system. In Section III C, we discuss techniques to handle a small number of molecules per cell.
For simplicity, in this paper we only consider periodic systems. However, our methods can
be straightforwardly generalized to standard types of physical boundary conditions (Dirichlet,
Neumann or Robin). In particular, since chemistry is local and does not require boundary
conditions, one can rely on methods we have developed in prior work without chemistry; see,
for example, the discussion in Ref. [81].

A. Diffusion-Only Case

Due to the lack of regularity of Z(D)
s (x, t) in Eq. (3), pointwise values of ns(x, t) are not

physically meaningful. Hence, we consider instead the spatial average of ns(x, t) over a cell.
We partition the system domain L1 × L2 × · · ·Ld into cells of volume ∆V = ∆x1 · · ·∆xd and
denote the cell number density of species s in cell i = (i1, . . . , id) as

ns,i(t) =
1

∆V

∫
cell i

ns(x, t)dx. (15)

We denote the face of a cell using the index f . If two contiguous cells have indices i and i + ej

(with ej being the unit vector along the j-axis), the face f shared by the cells is denoted by
i + 1

2
ej.

To obtain a spatial discretization of Eq. (3) that ensures discrete fluctuation-dissipation bal-
ance [58, 59], we use the standard second-order discrete Laplacian operator for the deterministic
diffusion part Ds∇2ns and introduce a staggered grid for the stochastic diffusive flux term
∇·
(√

2DsnsZ(D)
s

)
, see Fig. 1. For d = 1, a formally second-order spatial discretization of

Eq. (3) is written as

d

dt
ns,i = Ds

ns,i+1 − 2ns,i + ns,i−1

∆x2
+

√
2Ds

∆V

√
ñs,i+ 1

2
Ws,i+ 1

2
−
√
ñs,i− 1

2
Ws,i− 1

2

∆x
. (16)

The spatial average of ns(x, t) over the interval of length ∆x around face i± 1
2

is approximated

by ñs,i± 1
2
(t), whereas that of Zs(x, t) is modeled by 1√

∆V
Ws,i± 1

2
(t). To close the equation,
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ñs,i± 1
2
(t) is approximated by an average of ns,i(t) and ns,i±1(t), that is, ñs,i± 1

2
= ñ (ns,i, ns,i±1).

Natural candidates for the averaging function ñ(n1, n2) would be the Pythagorean means: the
arithmetic, geometric, and harmonic means. We choose a modified arithmetic average for
ñ(n1, n2) described in Section III C, for reasons detailed in Appendix B.
Generalization of the spatial discretization (16) to higher dimensions is straightforward. For
each face, a GWN process Ws,f is defined and ñs,f (t) is calculated from the cell number
densities of the two cells sharing the face by using the averaging function ñ(n1, n2), see Fig. 1.
By introducing notations ns(t) ≡ {ns,i(t)}, Ws(t) ≡ {Ws,f (t)}, and ñs(t) ≡ ñ (ns(t)), we
express the resulting SODEs for {ns,i(t)} as

d

dt
ns = Ds∇2

dns +

√
2Ds

∆V
∇d·

(√
ñsWs

)
, (17)

with the understanding that ∇2
d denotes the standard (2d+1)-point discrete Laplacian operator,

and ∇d· denotes a discrete divergence operator.

B. Reaction-Diffusion System

By combining Eqs. (6) and (17) we obtain the spatial discretization of the reaction-diffusion
FHD equations as a system of Ito SODEs,

d

dt
ns = Ds∇2

dns +

√
2Ds

∆V
∇d·

(√
ñsWs

)
+

Nr∑
r=1

νsrP (ar(n)∆V dt)

∆V dt
. (18)

In Eq. (1) fluctuations in the reaction rate are modeled as GWN, while in Eq. (18) we assume
Poisson fluctuations. Since the latter fluctuations are consistent with discrete nature of reactions
based on the CME, the description in Eq. (18) is physically more accurate. In fact, it has been
shown that the CLE description can give physically incorrect results since it is not consistent with
a Gibbs–Boltzmann or Einstein equilibrium distribution, even for the case of a single well-mixed
cell [56]. As shown above, the inclusion of Poisson fluctuations for reaction, however, requires the
notion of a mesoscopic cell and thus can be realized only after the SPDE is spatially discretized.
The choice of appropriate cell size is a delicate issue for the RDME and FHD descriptions. An
upper bound on the cell size is given by the penetration depth due to the underlying assumption
that each cell is homogeneous and reactions occur within a cell. In fact, there is not only an
upper bound of the cell size for a valid description but also a lower bound. This can be seen
by considering the fact that bimolecular reactions would become increasingly infrequent as the
cell size decreases [82, 83]. Several criteria for choosing the cell size have been proposed based
on physical arguments [82, 84, 85] and mathematical analysis [86]. For a small value of the cell
size, corrections in the rate constants of bimolecular reactions have been proposed [82, 87, 88].
However, these corrections do not fix the underlying problem which comes from the fact that
reactions are treated as a purely local process with no associated spatial length scale. In
microscopic (particle) models of reaction-diffusion such as the Smoluchowski [15] model or
the Doi model [82], a microscopic reactive distance appears and controls the reaction rate for
diffusion-limited reactions. By introducing a reactive distance into the model, and relaxing
the restriction that a reaction should occur among the molecules in the same cell, a modified
convergent RDME having well-defined limiting behavior for small cell size can be developed [89],
and could be combined with our FHD description of diffusion.

C. Maintaining Nonnegative Densities

The spatially discretized FHD equations (17) or (18) are well defined but suffer from two
issues that we now address. First, the number of molecules in a cell (i.e., ns,i∆V ) is not
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an integer. Second, the cell number density can become negative. When there are a small
number of molecules per cell in the system, the behavior of the FHD description (18) depends
sensitively on the averaging function ñ and the propensity functions ar, that appear in the
multiplicative noise terms. Hence, we carefully modify the form of ñ and ar for negative or very
small densities in order to greatly reduce the chances of producing future negative densities.
In Section V A, we demonstrate that the arithmetic mean produces more accurate results for
the equilibrium distribution than the other Pythagorean means. Based on the analysis given
in Appendix B, we use the following modification to the arithmetic mean:

ñ(n1, n2) =
n1 + n2

2
H0(n1∆V )H0(n2∆V ), (19)

where

H0(x) =


0 (x ≤ 0)

x (0 < x < 1)

1 (x ≥ 1)

(20)

is a smoothed Heaviside function. The smoothed Heaviside function H0 is introduced to
ensure the continuity of ñ at n1 = 0 or n2 = 0. As explained in Appendix B, this averaging
function guarantees nonnegativity for the diffusion-only system (17) in the continuous-time
description. In our simulations, we find this modification greatly reduces the occurrence of
negative density while closely matching the true equilibrium distribution, noting that in our
formulation the stochastic diffusive flux is continuously turned off at n1 ≤ 0 or n2 ≤ 0. We
also note that the smoothing is based on the number of molecules in a cell and if both cells
have at least one molecule (i.e., ni∆V ≥ 1), ñ becomes exactly the arithmetic mean. As shown
in Appendix B, the local modification near n = 0 does not cause any noticeable unphysical
behavior for ni∆V ≥ 1. In Section V, we demonstrate that our numerical schemes based on
Eq. (19) work very well even for a small number of molecules per cell.
For the propensity functions ar(n), we use the following correction to the law of mass action,
which is usually included in the RDME description: if the deterministic rate expression contains
n2
s (or n3

s, · · · ), replace it by ns(ns− 1
∆V

) (or ns(ns− 1
∆V

)(ns− 2
∆V

), · · · ). With this correction,
at thermodynamic equilibrium, the mean reaction rate becomes equal to the one calculated
from the deterministic rate expression with the mean number density. This can be seen from
the fact that if ns∆V follows Poisson statistics with mean n̄s∆V ,

〈
ns(ns − 1

∆V
)
〉

= n̄2
s and〈

ns(ns − 1
∆V

)(ns − 2
∆V

)
〉

= n̄3
s.

When reactions are combined with an FHD treatment of diffusion, number densities are no
longer restricted to nonnegative integers and special treatment is required to make reaction
rates nonnegative and physically sensible for small numbers of molecules. In this work, we
evaluate the rate ar(n) by using continuous-range number densities n (i.e., without trying to
round n∆V to integers) and ensure that each term in the rate of each reaction is nonnegative.
For example, we take the rate expression of the Schlögl model (see Section II C) to be

a(n) = k1n
+
(
n− 1

∆V

)+ − k2n
+
(
n− 1

∆V

)+ (
n− 2

∆V

)+
+ k3 − k4n

+, (21)

where n+ = max(n, 0).

IV. TEMPORAL INTEGRATORS

In this section, we develop temporal integrators for the spatially discretized FHD equation (18).
Our goal is twofold. First, we construct numerical methods that allow for a large time step
size even in the presence of fast diffusion. By treating diffusion implicitly, the severe restriction
on time step size can be bypassed. Second, we construct methods that maintain accuracy even
if the time step size is much larger than the diffusive hopping time. Since it is quite difficult
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to achieve second-order weak accuracy for general multiplicative noise [90], our goal here is to
ensure second-order accuracy where possible. In the limit in which the number of molecules per
cell is very large and one can replace random numbers by their means, our schemes reduce to
standard second-order schemes for deterministic reaction-diffusion PDEs. For linearized FHD,
our midpoint tau leaping-based schemes are second-order weakly accurate, and all midpoint
schemes reproduce at least second-order accurate static correlations, i.e., structure factors.
We build on previous work by some of us [58, 59, 66] and propose two (semi-) implicit schemes
as an alternative numerical method to conventional RDME methods. We mainly consider the
case where diffusion is much faster than reaction and molecules on average diffuse more than
a cell length per time step (i.e., 2dD∆t� ∆x2). We focus here on unsplit schemes that do not
rely on operator splitting. This is because we found that unsplit schemes give notably more
accurate structure factors than corresponding split schemes in our case. In addition, including
other transport processes (e.g., advection) and handling boundary conditions [91] to second
order is not straightforward for split schemes.
It is convenient to introduce dimensionless numbers, α and β, which measure how fast diffusion
and reaction are relative to the given time step size ∆t, respectively. For the single-species
equation (11), assuming ∆x1 = · · · = ∆xd = ∆x, we define

α = r∆t, β =
D∆t

∆x2
, (22)

where r is the chemical relaxation rate appearing in the linearized equations (11). Hence, we

can express the well-mixed condition (i.e., the penetration depth ` =
√
D/r � ∆x) as α� β.

In addition, the numerical stability condition of a scheme can also be given in terms of α and
β. That is, if reaction and/or diffusion are treated explicitly in a scheme, values of α and/or
β larger than a stability threshold cause numerical instability. For α� β, the stability limit
is mainly determined by fast diffusion:

β ≤ 1

2d
⇐⇒ ∆t ≤ ∆tmax ≡

∆x2

2dD
. (23)

Note that the stability limit becomes severe for large diffusion coefficients and small grid
spacing and worsens with increasing dimension.
In Section IV A, we present several numerical schemes for the FHD equation (18), including two
implicit schemes, and analyze the temporal orders of accuracy for the structure factors using the
linearized analysis described in Appendix C. In Section IV B, we analyze the stochastic accuracy
of the numerical schemes for large ∆t by investigating the structure factor of the one-dimensional
Schlögl model at different wavenumbers. Since analysis for the nonlinear equations is lacking
at present, we numerically justify the handling of multiplicative noise in Section V A.

A. Schemes

The simplest method for integrating Eq. (18) in time is the Euler–Maruyama tau leaping
(EMTau) scheme,

nk+1
s = nk

s +Ds∆t∇2
dn

k
s +

√
2Ds∆t

∆V
∇d·

(√
ñk
sW

k
s

)
+

Nr∑
r=1

νsrP(akr∆V∆t)

∆V
, (24)

where superscripts denote the point in time at which quantities are evaluated, e.g., nk
s = ns(k∆t)

and akr = ar(n(k∆t)), and we have used the compact notation for spatial discretization in-

troduced in Section III B. Here,
∫ (k+1)∆t

k∆t
W(t′)dt′ has been replaced by

√
∆tW k, where W k

denotes a collection of standard random Gaussian variables sampled independently for each
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species on each grid face at each time step. That is, the stochastic diffusive flux of species
s on face f at time step k is proportional to W k

s,f .
We also construct numerical schemes where reactions are treated by SSA, which is an exact
(exponential) integrator for reactions. We denote by Rs(n, τ ) the (random) change in the number
density of species s for a cell with initial state n obtained from SSA over at time interval τ (in
the absence of diffusion). We can then write the Euler–Maruyama SSA (EM-SSA) scheme as

nk+1
s = nk

s +Ds∆t∇2
dn

k
s +

√
2Ds∆t

∆V
∇d·

(√
ñk
sW

k
s

)
+ Rs(n

k,∆t). (25)

The EMTau scheme is explicit in the sense that all terms on the right-hand side of Eq. (24)
can be evaluated without knowing nk+1

s . However, a simple analysis shows that the time step
size is constrained by a stability condition (for derivation, see Eq. (C7))

β +
α

4d
≤ 1

2d
, (26)

which reduces to condition (23) for α� β. Since the EM-SSA scheme treats reactions using an
exponential integrator, it is only subject to the stability limit (23) without a restriction on α.
The stability limit imposed by fast diffusion can be overcome by using standard implicit
methods such as the second-order implicit midpoint or Crank–Nicolson method, which gives
a system of linear equations for nk+1

s :

nk+1
s = nk

s +Ds∆t∇2
d

(
nk
s + nk+1

s

2

)
+

√
2Ds∆t

∆V
∇d·

(√
ñk
sW

k
s

)
+

Nr∑
r=1

νsrP(akr∆V∆t)

∆V
. (27)

The linear system (27) can be solved efficiently iteratively using multigrid relaxation [92]; for
β . 1, solving the linear system is not much more expensive than a step of a second-order
explicit time stepping scheme. Note, however, that scheme (27) is only first order accurate
overall for reaction-diffusion systems. Hence, in addition to improved stability, it is important to
develop higher-order schemes to improve accuracy. Note that this is not as simple as replacing
tau leaping in Eq. (27) with SSA as in Eq. (25); this would still be only first-order accurate
even in the deterministic limit.
Here we construct numerical schemes based on the second-order temporal integrators for
the linearized equations of FHD developed in Refs. [59, 66]. Those temporal integrators are
second-order accurate in the weak sense for additive noise, and are used here as the basis for
handling diffusion. In order to add reactions into diffusion-only schemes, we consider two types
of sampling methods, tau leaping and SSA. For tau leaping, we use the weakly second-order
tau leaping method [60, 61]; a similar two-stage scheme has been originally proposed for the
CLE [93] to achieve second-order weak accuracy. Here we combine predictor-corrector midpoint
schemes proposed in Ref. [59] (for diffusion) and the second-order tau leaping method (for
reaction). Owing to similar two-stage structures of those schemes, they fit together in a rather
natural manner. In addition, since the resulting schemes still fit the framework of the implicit-
explicit algorithms analyzed in Ref. [59], they are second-order weakly accurate for additive
noise and an additional order of accuracy (i.e., third order) is gained for the structure factor.
We also develop midpoint schemes that use SSA instead of tau leaping for reactions. Unlike
tau leaping-based schemes, the SSA-based schemes do not suffer from instability even in the
presence of rapid reactions. The use of SSA may also help to prevent the development of
negative densities, which is one of the main numerical issues for large fluctuations. Hence,
while SSA-based numerical schemes are computationally more expensive, they work better
than tau leaping-based schemes when reactions are fast or when the number of molecules is
small. The SSA-based schemes we propose here belong to a class of exponential Runge–Kutta
schemes, and we construct them to ensure second-order deterministic accuracy, as well as
second-order accuracy for the structure factor; a detailed analysis of their weak accuracy is
at present missing even for linearized FHD.
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1. Explicit Midpoint Schemes

As a prelude to constructing two-stage implicit methods, we first consider improving the
accuracy of the explicit EMTau scheme (24) by using an explicit two-stage Runge–Kutta
(predictor-corrector) approach. By combining the explicit midpoint predictor-corrector scheme
from Refs. [59, 66] (for diffusion) and the midpoint tau leaping scheme from Refs. [60, 61]
(for reaction), we obtain the explicit midpoint tau leaping (ExMidTau) scheme:

n?
s = nk

s +
Ds∆t

2
∇2

dn
k
s +

√
Ds∆t

∆V
∇d·

(√
ñk
sW

(1)
s

)
+

Nr∑
r=1

νsrP(1)(akr∆V∆t/2)

∆V
, (28a)

nk+1
s = nk

s +Ds∆t∇2
dn

?
s +

√
Ds∆t

∆V
∇d·

(√
ñk
sW

(1)
s

)
+

√
Ds∆t

∆V
∇d·

(√
ñ•sW

(2)
s

)
(28b)

+
Nr∑
r=1

νsrP(1)(akr∆V∆t/2)

∆V
+

Nr∑
r=1

νsrP(2)
(
(2a?r − akr)+∆V∆t/2

)
∆V

,

where the superscripts (1) and (2) indicate that the terms correspond to the first and second
half of the time step, respectively. That is, P(1) (and similarly for W (1) and other random
increments) denotes the same random number in both the predictor and corrector stages, and
is only sampled once per time step. Following Refs. [60, 61], the mean reaction rate for the
second half step is corrected to (2a?r − akr)+, where a+ = max(a, 0).
For the magnitude of the stochastic diffusive fluxes over the second half of the time step, we
consider the following three options for the face average value ñ•s:

ñ•s = ñ
(
nk
s

)
, (29a)

ñ•s = ñ (n?
s) , (29b)

ñ•s = ñ
(
(2n?

s − nk
s)+
)
. (29c)

While all options are consistent with the Ito interpretation, the effect of this choice on accuracy
requires a nonlinear analysis that is not available at present. The option (29b) is used in
Ref. [66] and shown to lead to second-order weak accuracy for FHD equations linearized
around a time-dependent macroscopic state. The option (29c) is inspired by the midpoint
tau leaping scheme [60, 61]. However, it does not actually lead to second-order weak accuracy
for multiplicative noise because the fluctuating diffusion equation does not have the simple
noise structure that the CLE has [93]. For all our simulations, we use option (29c), as justified
by numerical results in Section V A.
The reactions can also be treated using SSA, to give the explicit midpoint SSA (ExMidSSA)
scheme

n�s = nk
s +

Ds∆t

2
∇2

dn
k
s +

√
Ds∆t

∆V
∇d·

(√
ñk
sW

(1)
s

)
, (30a)

n?
s = n�s + R(1)

s

(
n�,

∆t

2

)
, (30b)

nk+1
s = nk

s +Ds∆t∇2
dn

?
s +

√
Ds∆t

∆V
∇d·

(√
ñk
sW

(1)
s

)
+

√
Ds∆t

∆V
∇d·

(√
ñ•sW

(2)
s

)
(30c)

+ R(1)
s

(
n�,

∆t

2

)
+ R(2)

s

(
n?,

∆t

2

)
.

Here the predictor stage (30a)+(30b) is a split reaction-diffusion step, but the corrector is not
split. Note that two R(1) appearing in Eqs. (30b) and (30c) are the same random increment
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computed using SSA. In other words, the SSA algorithm is called once for each half of the
time step; this has the same computational cost as calling SSA once to compute Rs

(
nk,∆t

)
in the EM-SSA scheme (25).
Since both ExMidTau and ExMidSSA schemes treat diffusion explicitly, they are subject to
stability limits. The ExMidTau scheme has the same stability limit (26) as the EMTau scheme,
whereas the ExMidSSA scheme is subject to the same limit (23) as the EM-SSA scheme.
The ExMidTau scheme with the option (29b) is an instance of the explicit midpoint scheme
analyzed in Ref. [66] for weak noise (i.e., linearized FHD), and therefore achieves second-order
weak accuracy for linearized FHD and gives third-order accurate equilibrium structure factors.
On the other hand, the ExMidSSA scheme gives only second-order accurate structure factors.

2. Implicit Midpoint Schemes

Here we present two implicit midpoint schemes, where diffusion is treated implicitly based
on the implicit midpoint predictor-corrector scheme [59, 66]. By treating reactions using the
second-order midpoint tau leaping scheme [60, 61], we obtain the implicit midpoint tau leaping
scheme (ImMidTau) scheme:

n?
s = nk

s +
Ds∆t

2
∇2

dn
?
s +

√
Ds∆t

∆V
∇d·

(√
ñk
sW

(1)
s

)
+

Nr∑
r=1

νsrP(1)(akr∆V∆t/2)

∆V
, (31a)

nk+1
s = nk

s +Ds∆t∇2
d

(
nk
s + nk+1

s

2

)
+

√
Ds∆t

∆V
∇d·

(√
ñk
sW

(1)
s

)
+

√
Ds∆t

∆V
∇d·

(√
ñ•sW

(2)
s

)
+

Nr∑
r=1

νsrP(1)(akr∆V∆t/2)

∆V
+

Nr∑
r=1

νsrP(2)((2a?r − akr)+∆V∆t/2)

∆V
, (31b)

where the three options for ñ•s are given in Eq. (29). When SSA is used for the reactions, we
obtain the implicit midpoint SSA scheme (ImMidSSA) scheme,

n?
s = nk

s +
Ds∆t

2
∇2

dn
?
s +

√
Ds∆t

∆V
∇d·

(√
ñk
sW

(1)
s

)
, (32a)

nk+1
s = nk

s +Ds∆t∇2
d

(
nk
s + nk+1

s

2

)
+

√
Ds∆t

∆V
∇d·

(√
ñk
sW

(1)
s

)
+

√
Ds∆t

∆V
∇d·

(√
ñ•sW

(2)
s

)
+ Rs (n?,∆t) . (32b)

In the corrector stage, both schemes treat diffusion using the Crank–Nicolson method since
this gives the most accurate structure factors for diffusion-only systems [59]. For the predictor
step to the midpoint, we have chosen to use backward Euler for diffusion because this was
found to be optimal using the structure factor analysis discussed in more detail in Section IV B.
We point out again that the difference in how reactions are included in the ImMidTau and
ImMidSSA schemes stems from the fact that SSA is an exponential integrator whereas the
midpoint tau leaping method is only a second-order integrator. This difference must be taken
into account when analyzing the accuracy of SSA-based schemes both in the deterministic
limit and in structure factor analysis. Like the explicit midpoint schemes in Section IV A 1, for
linearized FHD, the ImMidTau scheme is second-order weakly accurate and gives a third-order
accurate structure factor, whereas the ImMidSSA scheme gives only a second-order accurate
structure factor. Since diffusion is treated implicitly in both schemes, they are not subject
to a stability limit depending on β. However, due to the explicit treatment of reactions, the
ImMidTau is subject to the stability condition α ≤ 2. The ImMidSSA scheme is unconditionally



15

linearly stable and has no stability restrictions on α and β but can be considerably more
expensive for systems with large numbers of molecules.
A key element of this work that distinguishes it from our previous work based on CLE [56]
is that here we replaced the GWN in the chemical noise with Poisson noise, and used a weakly
second-order tau leaping method [60, 61] to account for the non-Gaussian nature of the chemical
fluctuations. It is important to note that Poisson noise does not have a continuous range
limit, i.e., the Poisson distribution remains integer-valued even as the number of molecules
per cell becomes very large. Although it is tempting to replace the Poisson distribution with a
Gaussian distribution, this changes the large deviation functional and therefore we recommend
using tau leaping even in the case of weak fluctuations; we note that sampling from a Poisson
distribution can be done with a cost essentially independent of the mean using well-designed
rejection Monte Carlo methods. Because of the use of Poisson variates, which cannot be split
into a mean and a fluctuation like a Gaussian variate can, there is no strict “deterministic
limit” for our FHD discretizations. While the handling of diffusion degenerates to a standard
second-order deterministic scheme in the absence of the noise, the chemical noise is always
present and increments or decrements the number of molecules by integer numbers.

B. Structure Factor Analysis

Analyzing the accuracy of temporal integrators for stochastic differential equations is notably
nontrivial, especially if driven by multiplicative noise. As mentioned above, because of the
multiplicative noise, all of our midpoint schemes are formally only first-order weakly accurate.
However, traditional weak-order accuracy is not the most important goal in FHD simulations.
As first argued in Ref. [58] and then elaborated in Refs. [59, 66], for FHD it is more important
to attain discrete fluctuation-dissipation balance and higher-order accuracy for the spectrum
of the equilibrium fluctuations.
Here, we analyze the accuracy of our numerical schemes by investigating the structure factor
S(k) for the one-dimensional linearized FHD equation (11). The analytic expression for S(k)
produced by a given scheme can be obtained as a function of ∆x and ∆t following the procedure
described in Appendix C. Of specific interest to us is how accurately the implicit schemes
reproduce S(k) at large wavenumbers corresponding to length scales comparable to ∆x (i.e.,
k & (D∆t)−1/2) when diffusion is the fastest process, β � 1� α. This is because incorrect
diffusive dynamics at grid scales for ∆t� ∆x2/D can lead to gross errors in the magnitude
of the fluctuations at large wavenumbers.
Errors in the structure factor arise from two sources: spatial and temporal discretization. As
explained in Appendix C, the predominant contribution of spatial discretization is to replace
−k2 with the symbol of the standard discrete Laplacian. In one dimension, this simply amounts
to replacing k in the continuum expressions with the modified wavenumber k̃ defined by

k̃ =
sin
(
k∆x

2

)
∆x
2

. (33)

Note that exactly the same expression applies to the RDME, where diffusion is simulated by
lattice hops. In order to focus our attention on temporal integration errors, we will plot discrete
structure factors as a function of k̃ instead of k, which effectively removes the spatial errors.
Figure 2 illustrates how S(k) deviates from the exact result (13) at different wavenumbers
for large ∆t. We compare S(k) obtained from the four schemes by using values α = 0.025,
β = 10α = 0.25 for the explicit schemes, and α = 0.5 and β = 10α = 5 for the implicit schemes.
Note that these values correspond to a case where the time step size is chosen as half of the
stability limit ∆tmax for the explicit schemes and, it is increased by factor of 20 (∆t = 10∆tmax)
for the implicit schemes. As described below, the accuracy at diffusion-dominated scales k`� 1
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FIG. 2. Discrete structure factors S(k̃) for the ExMidTau, ImMidTau, ExMidSSA, and
ImMidSSA schemes for the one-dimensional linearized FHD equation (11) with Γ̄/n̄r = 2 (e.g., an
out-of-equilibrium monostable Schlögl model). Note that different values of β are chosen for the
explicit schemes (β = 0.25) and the implicit schemes (β = 5) and α is chosen as α = 0.1β. The
exact continuum result (13) is depicted by the dotted line.

and reaction-dominated scales k`� 1 largely depend on how diffusion (i.e., explicit or implicit)
and reaction (i.e., tau leaping or SSA) are treated, respectively.
As the time step size approaches the diffusive stability limit, β → 1/2 in one dimension,
the explicit schemes become inaccurate and eventually numerically unstable at the largest
wavenumbers, as seen in the figure for β = 1/4. Due to the small values of α, both schemes
give accurate results for reaction-dominated scales. Note, however, that the SSA-based schemes
give exact S(0) and they are in general more accurate at reaction-dominated scales than the
corresponding tau leaping-based schemes. Hence, we see that, for β � α, the accuracy of the
explicit schemes is largely affected by numerical instability arising from diffusion.
On the other hand, both implicit schemes give fairly good S(k) in the overall range of k even
though ∆t is twenty times larger and β = 5. As expected, the ImMidSSA scheme is more accurate
for reaction-dominated scales k` � 1, for which the ImMidTau scheme shows some errors
because of the relatively large value of α = 0.5. However, for intermediate scales k` ∼ 1, the
ImMidTau scheme is more accurate because it attains third-order accuracy for static covariances.
At diffusion-dominated scales k` � 1, both implicit schemes give accurate results. This is
not accidental, for we have selected these schemes from a family of schemes parameterized
in Ref. [59] exactly for this reason. Specifically, the treatment of diffusion in both schemes
is based on the implicit midpoint scheme (Crank–Nicolson), which gives the exact S(k) in
the absence of reactions [59]. In addition, reaction is incorporated in a way that maintains
fluctuation-dissipation balance for k`� 1 even for relatively large values of α. For small α,
the time integration error of the ImMidTau scheme for the structure factor at the maximum
wavenumber kmax` = π

√
β/α is estimated as

S(kmax)− S0(kmax)

S0(kmax)
≈ − β

2(1 + 2β)2
α2, (34)

where S0(k) = lim∆t→0 S(k) is the structure factor in the absence of temporal integration
errors (see Appendix C). Hence, for a given value of α, S(k) gives accurate results at k`� 1

for large β. For the ImMidSSA scheme, β in the numerator is replaced by β + (1 + 2β)( Γ̄
n̄r
− 1)

and a similar stable behavior for large β is observed. By expanding S(kmax)− S0(kmax) for
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small ∆t, we also see that the error is O(α2β) = O(∆t3) for the ImMidTau scheme, whereas it
is O(∆t2) for the ImMidSSA except at thermodynamic equilibrium (i.e., except when Γ̄ = n̄r),
where it is third-order accurate.

V. NUMERICAL RESULTS

We perform numerical simulations for the following three stochastic reaction-diffusion systems.
In Section V A, we use the equilibrium Schlögl model in one, two, and three dimensions to
validate our numerical methods. The analysis in Section IV B assumed additive noise, reflecting
a large number of molecules per cell. Here we present numerical results demonstrating that the
methodology continues to work when there are a small number of molecules per cell and the
effects of multiplicative noise are significant. In particular, we show that our numerical methods,
including the modified arithmetic-mean averaging function discussed in Section III C, accurately
reproduce the Poisson statistics that characterize the thermodynamic equilibrium distribution.
In Sections V B and V C, we study the effects of fluctuations on chemical pattern formation.
In Section V B, we test our numerical methods on a time-dependent problem: two-dimensional
Turing-like pattern formation in the three-species BPM model [69, 70]. We investigate how
accurately both time-transient and steady state behavior are captured for the ImMidTau and Im-
MidSSA schemes when a large time step size is used. We consider the case where the populations
of chemical species have different orders of magnitude, which is a frequently encountered situation
where a conventional RDME-based method may not work efficiently. We demonstrate that the
ImMidTau scheme scales very well with an increasing number of molecules per cell so that even
the deterministic limit of vanishing fluctuations can be explored. In Section V C, we demonstrate
the scalability to large systems and computational efficiency of our FHD approach by presenting a
three-dimensional numerical simulation of chemical front propagation in a two-species model [7].
As a reference method for comparison, we use an RDME-based method, as proposed in
Appendix A, which is constructed via a standard operator splitting technique by combining
multinomial diffusion sampling [63] and SSA. Such a split scheme is notably more efficient
than ISSA when there are a large number of molecules per cell, and becomes an exact sampling
method for the RDME in the limit ∆t→ 0. This RDME-based scheme works with nonnegative
integer populations and reproduces correct fluctuations at thermodynamic equilibrium. However,
diffusion imposes the same restriction (23) on ∆t, and the split scheme produces only a
first-order accurate structure factor in general.
In order to set a desired magnitude of fluctuations without changing any other system
parameters, we introduce a factor A, which scales the cell volume ∆V = A∆x1 · · ·∆xd. Hence,
A can be interpreted as the surface cross section in one dimension and the thickness of a
system in two dimensions, and as a rescaling of the number density in three dimensions. Since
the number of molecules in a cell is ns,i∆V , the larger A is, the more molecules in a cell there
are and the weaker the fluctuations become.

A. Schlögl Model at Thermodynamic Equilibrium

In this section, we test the numerical schemes constructed in Sections III and IV on the Schlögl
reaction-diffusion model, first introduced in Section II C. Simulation parameters are chosen to
correspond to a system in thermodynamic equilibrium, so that the equilibrium fluctuations are
Poisson and the structure factor S(k) = neq is constant, both with and without (i.e., diffusion
only) chemical reactions. Specifically, we set the rate constants as k1 = k2 = k3 = k4 = 0.1
(see Eq. (14)), which gives neq = 1 and α = 0.2∆t. We set the diffusion coefficient D = 1 and
the grid spacing to unity for d = 1, 2, 3, and thus β = ∆t. We consider the case where the
mean number of molecules per cell is 10 by setting A = 10.
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FIG. 3. Static fluctuations of the spatially discretized FHD equation (18) at thermodynamic
equilibrium. (Left) Structure factors S(k̃) calculated by using different averaging functions ñ. The
solid lines depict the results from the equilibrium Schlögl model (neq∆V = 10), whereas the dotted
lines are from the corresponding diffusion-only system. Note that the exact result for both systems is
S(k̃) = neq independent of k̃, which corresponds to Poisson equilibrium fluctuations. (Right) Empirical
histograms P (N) of the number of molecules per cell for the Schlögl model (red circles) and the diffusion-
only system (blue crosses), computed using the arithmetic mean averaging function. For comparison,
we show the correct Poisson distribution PPoisson(N) and its Gaussian approximation PGauss(N). The
inset shows the errors P (N)− PPoisson(N) with error bars corresponding to two standard deviations.

1. Continuous-Time FHD Equation

Prior to evaluating the different temporal integration strategies, we first focus our attention on
the continuous-time discrete-space FHD equation (18) to establish a baseline for comparison and
to evaluate the effectiveness of the choice of averaging function (19). To eliminate temporal inte-
gration errors we use the EMTau scheme (24) with a very small time step size ∆t = 10−3; results
from the other FHD schemes are similar for sufficiently small ∆t. The left panel of Fig. 3 shows
the structure factors S(k) computed for Nc = 512 grid cells in one dimension for the arithmetic,
geometric, and harmonic mean (AM, GM, HM) averaging functions ñ(n1, n2). The correct flat
spectrum is accurately reproduced by the modified AM averaging function (19). On the other
hand, the GM and HM averaging functions give smaller S(k) at diffusion-dominated scales
k`� 1. This can be also observed from the diffusion-only system for all wavenumbers, as theo-
retically explained in Appendix B. Henceforth, we use the modified AM averaging function (19).
The right panel of Fig. 3 shows that using the AM averaging function, the correct Poisson distri-
bution for the number N of molecules in a cell is accurately reproduced for both reaction-diffusion
and diffusion-only systems at thermodynamic equilibrium. From the equilibrium number density
distribution ρ(n), we construct a discrete distribution for integer number of molecules N per cell,

P (N) =

∫ (N+ 1
2

)/∆V

(N− 1
2

)/∆V

ρ(n)dn, (35)

and compare it with a Poisson distribution PPoisson(N) with mean neq∆V , as well as a Gaussian
distribution PGauss(N) having the same mean and variance as PPoisson(N). The agreement of
P (N) and PPoisson(N) is remarkable in the sense that FHD was originally proposed to account
for only second moments of (small) Gaussian fluctuations. Since PPoisson(N) is significantly
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FIG. 4. Deviations from the correct equilibrium distribution PPoisson(N) as ∆t increases for the four
midpoint schemes applied to the one-dimensional Schlögl model at thermodynamic equilibrium. The left
panel shows the KL divergence (36), the middle panel shows the probability of negative density (37), and
the right panel shows the correlation coefficient (38) between neighboring cells. The red and green solid
lines denote the ImMidTau and ExMidTau schemes, respectively, whereas the blue and purple dotted
lines denote the ImMidSSA and ExMidSSA schemes, respectively. The arrows denote the stability limit
∆tmax of the explicit schemes, see Eq. (23). The error bars correspond to two standard deviations.

different from PGauss(N) for neq∆V = 10, we confirm that our spatially discretized FHD
equation (18) describes (large) Poisson fluctuations faithfully.

2. Time Integration Errors

In order to investigate time integration errors of our numerical schemes, we compare the numer-
ical equilibrium distribution for a given time step size ∆t with the target Poisson distribution
PPoisson(N) by using the following measures. First, we compute the Kullback-Leibler (KL)
divergence (distance),

DKL =
∞∑

N=0

PPoisson(N) log
PPoisson(N)

P (N)
. (36)

Second, we compute the probability of negative number densities,

Pneg =

∫ 0

−∞
ρ(n)dn. (37)

Third, we compute the correlation coefficient ζ between neighboring cells,

ζ =
Cov

[
ni, ni±ej

]
Var [n]

. (38)

Note that all three measures should be zero at thermodynamic equilibrium, as they would
be for RDME.
We considered the three options for the stochastic flux amplitude ñ•s in Eq. (29). For ζ, the three
options give similar values within standard errors of estimation. For DKL and Pneg, option (29a)
gives the largest values (i.e., least accurate) and option (29c) the smallest (not shown). Based
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on this result, we will adopt (29c) and use it for all of the simulations. Figure 4 shows how these
measures deviate from zero as ∆t increases for Nc = 64 cells in one dimension for the different
schemes. As expected, for small values of ∆t, all schemes give similar values. DKL converges to
a small value, which is consistent with the good agreement between P (N) and PPoisson(N) seen
in the right panel of Fig. 3. Pneg is observed to converge to zero as ∆t→ 0, which demonstrates
the effectiveness of the approach described in Section III C and agrees with the analysis in
Appendix B. Also, no correlation between neighboring cells is observed for small ∆t within
statistical errors, which is consistent with the flat spectrum S(k) shown in the left panel of Fig. 3.
As ∆t approaches the explicit stability limit ∆tmax, rapid worsening is observed in both explicit
schemes in all three measures. While Pneg and ζ behave similarly for both schemes, DKL remains
small for larger values of ∆t for the ExMidSSA scheme compared to the ExMidTau scheme.
For both implicit schemes, it can be clearly seen that not only is the diffusion instability
bypassed but also the accuracy is well maintained for large ∆t. For comparable accuracy, an
order of magnitude larger time step size than the explicit schemes can be chosen. The ImMidTau
scheme gives smaller DKL than the ImMidSSA scheme if ∆t is smaller than a certain value.
This is consistent with the observation that the former scheme has a higher temporal order of
accuracy in S(k). However, due to inaccurate handling of reactions by tau leaping for large ∆t,
the ImMidTau scheme eventually gives larger DKL. For Pneg and ζ, similar behavior is observed.
Similar behavior is observed for higher spatial dimensions d = 2 and d = 3 (not shown).
However, for a given target accuracy tolerance, we find that a smaller time step size should
be chosen, which is inversely proportional to the dimensionality d. This should not come as
a surprise since the explicit stability limit ∆tmax ∼ 1/d, see Eq. (23). Therefore, we conclude
that ∆t can be chosen an order of magnitude larger for the implicit schemes than for the
explicit schemes independent of the spatial dimension.

B. Turing-like Pattern Formation

In this section, we investigate pattern formation in the three-species Baras–Pearson–Mansour
(BPM) model [69, 70],

U + W
k1→ V + W, 2V

k2


k3

W,

U
k4


k5

∅, V
k6


k7

∅.
(39)

We choose the rate constants so that the deterministic reaction-only system attains a limit cycle
as its stable attractor, and we choose the diffusion coefficients so that a Turing-like pattern
forms in the reaction-diffusion system [56]. Specifically, we set k1 = k2 = 2× 10−4, k3 = 1,
k4 = 3.33× 10−3, k5 = 16.7, k6 = 3.67× 10−2, k7 = 4.44 and DU = 0.1, DV = DW = 0.01.
We note that on the limit cycle, number densities of the three species oscillate in significantly
different ranges: nU ∈ (999, 2024), nV ∈ (302, 645), and nW ∈ (18.2, 83.2). For a physical
domain with side lengths Lx = Ly = 32, we use three spatial resolutions with grid sizes
Nc = 642, 1282, and 2562 cells. For the initial number densities, we choose a point on the limit
cycle (n0

U, n
0
V, n

0
W) = (1686, 534, 56.4) and generate the initial number of molecules of each

species s in each cell from a Poisson distribution with mean n0
s∆V = n0

sA∆x∆y. We use our
implicit schemes in order to bypass the stiff stability limit imposed by the fast diffusion of
U molecules. To obtain reference FHD results having minimal time integration errors, we use
the ImMidTau scheme with ∆t = 0.1. To test the importance of fluctuations, a deterministic
version of the ImMidTau scheme is used with ∆t = 0.1, with random initial conditions generated
from a Poisson distribution corresponding to thickness A = 10.
Figure 5 shows snapshots of a final Turing pattern formed for A = 1 and 642 cells. While the
pattern is qualitatively correct, the quantitative behavior of our FHD formulation may be ques-
tioned since the mean number of W molecules in a cell can be as low as 4.5 at small t in this case.
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FIG. 5. Two types of steady-state Turing-like patterns observed in the two-dimensional BPM model
with 642 cells and A = 1. Snapshots of nU are obtained at t = 5× 104 from FHD (left two panels) and
RDME (right two panels) simulations with a small time step size. Panels (a) and (c) show a hexagonal
structure (with 12 dots), whereas panels (b) and (d) exhibit a monoclinic structure (with 11 dots).

To confirm the FHD description applies even for relatively small numbers of molecules per cell,
we compare the FHD results to reference RDME results obtained using the SSA/2+MN+SSA/2
scheme (A3) with ∆t = 0.01. We find that the FHD reference simulations are qualitatively very
similar to the RDME reference simulations over a wide range of thicknesses A, as we illustrate in
Fig. 5. For our setup, after the initial formation of a disordered pattern of dots with low concentra-
tion of U molecules (blue dots in Fig 5), the dots split and merge and diffuse to eventually form a
stable regular pattern; note that the final patterns are nearly periodic lattice structures but their
geometry is affected to some extent by the finite size of the domain. For A = 1, by t = 5× 104,
almost all samples had formed a steady pattern. Most samples formed a hexagonal (12 dots, see
panels (a) and (c) in Fig 5), and a few formed a monoclinic (11 dots, see panels (b) and (d) in
Fig. 5) lattice of dots, for both FHD and RDME. Note that while FHD simulations using the Im-
MidTau scheme are equally efficient independent of A, RDME simulations become prohibitively
expensive for large A & 100 due to the very large number of U molecules (as many as 2× 106A)
in the system. For weaker fluctuations, A = 1000, FHD simulations reveal that the annealing
of the lattice defects takes much longer and we see several disordered or defective patterns even
at t = 5× 104 (not shown). Therefore, not only do fluctuations accelerate the formation of
the initial (disordered) pattern, but they also appear to accelerate the annealing of the defects.
Since the formation of the pattern is driven by an instability, it is itself a random process and
a proper quantitative comparison between the different methods requires a careful statistical
analysis of an ensemble of trajectories. In order to capture the time transient behavior of
pattern formation, illustrated in the right panel of Fig. 6, we calculate the spatially-averaged
density n̄U(t) = 1

Nc

∑
i nU,i(t). In the left panel, we compare sample trajectories of n̄U(t) for

A = 1 and A = 10 for RDME (similar results are obtained for FHD) and for deterministic
reaction-diffusion. While n̄U(t) initially oscillates as in the limit cycle, as the Turing-like pattern
begins to form, the oscillation amplitude decays and n̄U(t) eventually attains a steady value.
By comparing A = 1 and 10, we see that larger fluctuations facilitate faster pattern formation,
as observed in prior work [56] by us and others. By comparing RDME results for thickness
A = 10 with deterministic reaction-diffusion started from the same initial condition, we see
that the effect of fluctuations on pattern formation is not just due to random initial conditions.
We generate 16 sample trajectories for each set of parameter values, fit each realization of
n̄U(t) using seven fitting parameters a1, · · · , a7 to

n̄U(t) =

(
1− tanh

t− a1

a2

)(
a3 sin(a4t+ a5) + a6

)
+ a7, (40)
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FIG. 6. Turing-like pattern formation in the two-dimensional BPM model with 642 cells.
(Left) Spatially-averaged density n̄U(t) of species U for domain thickness A = 1 and A = 10
(RDME results), as well as deterministic reaction-diffusion started from random initial conditions
corresponding to A = 10. (Right) Snapshots of nU for A = 10 at four different times t at which
n̄U(t) attains a local minimum, indicated by circles in the left panel.
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/ā

d
et

7

A = 1 A = 10 A = 100 A = 1000

RDME, 642 cells
RDME, 2562 cells

FHD, 642 cells
FHD, 2562 cells

0.1 1 10
∆t

0.92

0.94

0.96

0.98

1

ā
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FIG. 7. (Left) Scatter plots of the decay onset time a1 and the steady spatial average density a7 for
several values of the cell thickness A and two grid resolutions. RDME and FHD results are compared for
A = 1 and A = 10, whereas only the FHD results (using the ImMidTau scheme) are shown for A = 100
and A = 1000 since RDME simulations are prohibitively expensive. (Right) Average values ā7 of a7 over
16 samples for the ImMidTau and ImMidSSA schemes with 642 cells as a function of time step size ∆t,
for cell thicknesses A of 0.1, 1, and 10. For comparison, the RDME results for ∆t = 0.01 are shown on
the left with error bars corresponding to two standard deviations. Error bars are omitted for the implicit
schemes; they are comparable to the RDME results. Note that ai are normalized by the average values
ādet
i for deterministic reaction-diffusion started with random initial conditions corresponding to A = 10.
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and compare the distributions of the fitting parameters. Note that a1 and a7 correspond to
the decay onset time and the steady spatial average density, respectively. In the left panel
of Fig. 7, we compare the empirical distributions of (a1, a7) from the RDME and FHD results
for different values of the thickness A and spatial resolutions. For each value of A, we observe
that distributions obtained from different methods and/or resolutions coincide. For A = 1 and
A = 10, we reconfirm that the RDME approach produces statistically very similar results for
three resolutions and the FHD results are statistically indistinguishable from the RDME results.
It is quite remarkable that FHD works even for A = 1 and 2562 cells, which can have as low
as 0.3 molecules per cell at small t, and this demonstrates the robustness of our treatment
for a small number of molecules per cell. As the magnitude of the fluctuations increases (i.e.,
as A decreases), the pattern begins to form earlier (i.e., a1 decreases), as already seen in Fig. 6,
while the steady spatial average density a7 becomes smaller. In addition, while the variance
of a1 does not change significantly as A varies, the variance of a7 becomes larger for smaller A.
Finally, we investigate time integration errors of our implicit schemes for the Turing-like pattern
formation. For the ImMidTau scheme, we increase ∆t up to the stability limit arising from reac-

tions ∆t
(R)
max ≈ 1.3. The right panel of Fig. 7 shows the mean values ā7 of the steady spatial aver-

age density a7 over 16 samples versus ∆t for 642 cells. While both schemes give similar values to
the RDME results for small ∆t, they show different behavior for large ∆t, which also depends on
A. As expected, in the ImMidTau scheme, the value of ā7 rapidly deviates from the RDME result

as ∆t approaches ∆t
(R)
max, especially if there are few molecules per cell, A = 0.1 or A = 1. On the

other hand, in the ImMidSSA scheme, ∆t can be increased beyond ∆t
(R)
max, and deviations from

the RDME results remain small even for the smallest value of A. Hence, handling reactions by
SSA not only removes the reaction stability constraint but also improves the accuracy for a small
number of molecules per cell. However, it should be noted that this improvement comes at a sig-
nificant computational cost, since the SSA scheme is much more expensive than tau leaping espe-
cially as the number of molecules per cell increases. Therefore, the SSA-based schemes are imprac-
tical in the regime of weak fluctuations due to poor scaling. We discuss some alternatives to SSA
that may significantly improve the computational cost for weaker fluctuations in the Conclusions.

C. Front Propagation

As a final example, we simulate three-dimensional front propagation in a two-species stochastic
reaction-diffusion system having the following reaction network:

A
k1→ ∅, 2A + B

k2→ 3A, B
k3


k4

∅. (41)

This model has been proposed to reproduce axial segmentation in Ref. [7], where ISSA
simulations have been performed for the one-dimensional case. Following Ref. [7], we set
k1 = 0.4, k2 = 0.137, k3 = 0.1, k4 = 1 and DA = 1, DB = 10. For a physical domain with side
lengths Lx = Ly = Lz = 512, we use 2563 cells. To initiate front propagation, we generate initial
number densities as follows. We first assign to each cell i and species s a mean number density

n0
s,i = n(1)

s +
1

2

(
1 + tanh

ri −R
ξ

)(
n(2)
s − n(1)

s

)
, (42)

where ri is the distance from the cell center to the center of the domain. This initial-
izes a spherical region of radius R in the first uniform equilibrium state of the model,

(n
(1)
A , n

(1)
B ) = (2.16, 1.35), while the rest of the domain is initialized in the second uniform

equilibrium state, (n
(2)
A , n

(2)
B ) = (0, 10), with a smooth transition region between the two states of

width ≈ 2ξ. Then, as in Section V B, we generate the initial number of molecules of each species
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FIG. 8. Three-dimensional FHD simulation of front propagation in a two-species stochastic
reaction-diffusion model (41) using the ImMidTau scheme. The number density of species A is
shown at four different times t for the stochastic reaction-diffusion system (in the top row) and the
corresponding deterministic case (in the bottom row). The same initial conditions with Poisson
fluctuations are used in both simulations.

in each cell from a Poisson distribution with mean n0
s,i∆V = n0

s,iA∆x∆y∆z. We simulate the
system for parameters A = 1000, R = 16, and ξ = 4 = 2∆x using the ImMidTau scheme with
∆t = 0.25. For comparison, we also simulate the corresponding deterministic system using
a deterministic version of the ImMidTau scheme with the same time step size and (random)
initial conditions. Simulations are performed using a parallel implementation of the algorithm
using the BoxLib software framework [94]. We emphasize that a corresponding RDME system
is too large to simulate with conventional RDME-based methods; while the total number of
molecules in the system varies as the front propagates, it is of the order of 1012 for A = 1000.

Figure 8 shows the growth of the spherical region as the more stable phase propagates into
the less stable phase via a spherical traveling wave. While the phase boundary having a peak
population of species A propagates, a Turing-like pattern develops behind the wave front; in
one dimension this pattern is periodic and more pronounced in the presence of fluctuations [7].
In two and three dimensions, fluctuations not only enhance the pattern but they also make it
disordered, as seen in the figure by comparing the stochastic and deterministic cases. In addition,
the phase boundary becomes more irregular under fluctuations. Note that the numerical results
for the deterministic case are not perfectly radially symmetric not only due to the noisy initial
conditions but also due to grid artifacts introduced by the standard discrete Laplacian, which
is not perfectly isotropic [95] on length scales compared to the front width (i.e., the penetration
depth); one would require an even finer grid to correct for this spatial discretization artifact.
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VI. CONCLUSIONS

In this work, we have formulated a fluctuating hydrodynamics (FHD) model for reaction-
diffusion systems and developed numerical schemes to solve the resulting stochastic ordinary
differential equations (SODEs) (18) for the number densities ns,i(t) of chemical species in each
cell. We obtained the diffusion part of the SODEs from an FHD description of a microscopic
system consisting of molecules undergoing independent Brownian motions, and added reactions
in an equivalent manner to the reaction-diffusion master equation (RDME). We presented
two implicit predictor-corrector schemes, the ImMidTau (31) and ImMidSSA (32) schemes,
that treat reactions using tau leaping and SSA, respectively. In these schemes, diffusion is
treated implicitly so that the stability limit imposed by fast diffusion can be bypassed and
the time step size can be chosen to be significantly larger than the hopping time scale of
diffusing molecules. In addition, two-stage Runge–Kutta temporal integrators are employed
to improve the accuracy. To confirm the validity of our FHD formulation and demonstrate the
performance of our numerical schemes, we numerically investigated not only a system at steady
state (Schlögl reaction-diffusion model), but also time-dependent two-dimensional Turing-like
pattern formation and three-dimensional front propagation.

Based on our analytical and numerical investigation, we conclude that the ImMidTau scheme
is an efficient and robust alternative numerical method for reaction-diffusion simulations. The
reason is threefold. First, the cost of the scheme does not increase for increasing number of
molecules per cell (weaker fluctuations). For small numbers of molecules per cell (large fluc-
tuations), the integer-valued RDME description is more appropriate than the continuous-range
FHD description. However, by using the approach proposed in Section III C, we ensured that the
FHD description remains robust and gives accurate results even for a small number of molecules
per cell, as shown in Section V A. Hence, as shown in Section V B, our numerical methods can
efficiently simulate reaction-diffusion systems over a broad range of relative magnitude of the
fluctuations. Second, the scheme allows a significantly larger time step size without degrading
accuracy compared to existing RDME-based numerical methods [39–44], which use a fixed time
step size for diffusion that is comparable to the hopping time scale. In particular, we found that
the time step size could be chosen an order of magnitude larger for the implicit schemes than
for explicit methods, independent of the spatial dimension. Lastly, FHD can take advantage
of development of efficient parallel algorithms developed for computational fluid dynamics
(CFD) that enable effective use of high-performance parallel architectures while providing the
framework for treating more complex problems with additional physical phenomena. This
enabled us to perform three-dimensional simulations of chemical front propagation involving
as many as 1012 molecules using the BoxLib CFD software framework [94].

The explicit tau leaping methods used here are quite simple to implement but are subject to a
stability limit for fast reactions, and can lead to negative densities when fluctuations are large.
While some implicit tau leaping methods have been developed, as an alternative we developed
methods that use SSA for reactions. The ExMidSSA and ImMidSSA methods, however, do
not scale as the fluctuations become weaker. This deficiency can be corrected by replacing SSA
by a recently-developed hybrid algorithm termed asynchronous tau leaping [96] that combines
SSA and tau leaping in a dynamic manner by simulating multiple events with asynchronous
time steps. A nontrivial question that requires further study is how to control the accuracy
of such methods. In fact, the standard notion of temporal order of accuracy does not apply
to asynchronous algorithms since there is no notion of a fixed time step size. Future work
should develop FHD-based numerical schemes that are accurate and robust even for a small
number of molecules per cell and also scale to the deterministic limit efficiently.

One of the advantages of the FHD approach for reaction-diffusion systems is its natural gener-
alization to more complicated and realistic applications. Chemical reactions of interest usually
occur in liquid solution, and often in a dense crowded environment such as the cytoplasm [97–99].
It is well-known that Brownian motion of liquid molecules or suspended macromolecules
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in liquids is dominated by hydrodynamic effects related to viscous dissipation [73, 99, 100].
This means that the diffusion model commonly used in reaction-diffusion models, including
this work, which assumes that reactants are independent non-interacting Brownian walkers
diffusing with a constant diffusion coefficient, does not apply in the majority of practical
problems of interest. Notably, crowding or steric interactions affect the local hydrodynamic
mobility of individual reactants, and hydrodynamic interactions (HI) among the diffusing
reactants introduce strong correlations among the diffusive motions of the reacting particles
(and also among reactants and passive crowding agents) [99]. Excluded volume due to steric
repulsion introduces cross-diffusion effects, i.e., coupling between the diffusive fluxes for different
species [101], as well as concentration-dependent diffusion coefficients. Furthermore, it has been
observed that cross-diffusion may lead to qualitatively different Turing instabilities [102–104].
Long-ranged contributions of hydrodynamic interactions can be captured by accounting for
the advection of concentration fluctuations by the thermal velocity fluctuations, which follow a
fluctuating Stokes equation [73, 100]. Additional thermodynamic contributions to the diffusive
fluxes such as cross-diffusion, barodiffusion and thermodiffusion do not seem straightforward
in the RDME but are easily included in our FHD formulation [56]. In future work, we will
investigate these hydrodynamic effects on stochastic reaction-diffusion phenomena.
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Appendix A: RDME-Based Split Scheme

As a reference algorithm for stochastic reaction-diffusion simulation, we construct a numerical
scheme for the RDME through a standard operator splitting technique, as done in a number
of prior works [23, 41, 42, 44]. This technique allows one to obtain a numerical scheme for
the reaction-diffusion system by combining numerical methods for the diffusion-only and
reaction-only systems. Here we combine multinomial diffusion sampling [40, 63] for diffusion
and SSA for reaction via Strang splitting [62].
One distinguishing feature of the resulting scheme, compared to exact sampling methods such
as ISSA, is the use of a fixed time step size ∆t for diffusion, which facilitates an efficient
numerical simulation if diffusion is fast. As shown below, while there are several advantages
of this scheme over ISSA, the choice of ∆t is constrained as it is for explicit FHD schemes.
In Section A 1, after reviewing the multinomial diffusion sampling method, we present an
RDME-based split scheme and discuss its advantages and disadvantages. In Section A 2, we
present a stochastic accuracy analysis for this scheme.

1. Split Scheme

In the multinomial diffusion (MN) sampling method, the numbers of molecules in each cell
after time ∆t are calculated by sampling how many molecules have moved from a cell to a
neighboring cell. Here we follow the simple algorithm described by Balter and Tartakovsky [63]
and only allow particles to move to nearest-neighbor cells. More complicated but also more
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accurate algorithms that allow particles to jump to further than nearest-neighbor cells are
described by Lampoudi et al. [40]. We use the notation introduced in the body of the paper.
By denoting the number of molecules of species s diffusing from cell i to cell i′ over the time
interval ∆t as Ns,i→i′ , the change in the number density ns,i can be expressed in terms of the
sum of the inward and outward fluxes,

ns,i(t+ ∆t) = ns,i(t) +
1

∆V

d∑
j=1

(
Ns,i+ej→i +Ns,i−ej→i −Ns,i→i+ej −Ns,i→i−ej

)
(A1a)

= ns,i(t) + Di(ns(t),∆t), (A1b)

where ns(t) = {ns,i(t)}. For each cell i, the outward fluxes (Ns,i→i+e1 , Ns,i→i−e1 , · · · ,
Ns,i→i+ed , Ns,i→i−ed , Ns,i→i) are random variables sampled from the multinomial distribution
with

∑
i′ Ns,i→i′ = ns,i(t)∆V total trials and probabilities (ps, ps, · · · , ps, ps, 1− 2dps) where

ps = Ds∆t/∆x
2, where we have assumed ∆x1 = · · · = ∆xd = ∆x.

For fast diffusion, this method becomes more efficient than treating hoping events one by
one (as in ISSA). However, it is an approximate method since the actual distribution of the
outward fluxes deviates from the multinomial distribution as ∆t increases. In fact, ∆t cannot be
arbitrarily large and is limited by condition (23) because of the requirement 1− 2dps ≥ 0. We
also note that the number of molecules in a cell never becomes negative due to the constraint∑

i′ Ns,i→i′ = ns,i(t)∆V . Hence, the fluxes on disjoint faces are correlated, which is different
from the FHD description (17). In the deterministic limit this scheme converges to a standard
forward Euler scheme for the diffusion equation, and is therefore only first-order accurate in time.
In the stochastic setting, this scheme adds correlations between the fluxes through different
faces of a given cell in such a way as to ensure discrete fluctuation-dissipation balance for any
allowable time step size. In fact, for a system with diffusion only, this method ensures that
the equilibrium fluctuations are strictly Poisson, as desired for independent Brownian walkers.
In order to handle chemical reactions, we use the SSA algorithm locally and independently
in each cell, without any diffusive events. Let Rs(n, τ) denote the (random) change in the
number density of species s when a cell with initial state n is simulated using SSA over a
time interval τ . In the absence of diffusion, the SSA-based reaction scheme can be written as

ns,i(t+ ∆t) = ns,i(t) + Rs(ni(t),∆t). (A2)

If we combine the diffusion-only (A1) and reaction-only (A2) schemes using a Strang splitting
approach [62], we obtain the SSA/2+MN+SSA/2 scheme

n?
s,i = nk

s,i + Rs(n
k
i ,∆t/2), (A3a)

n??
s,i = n?

s,i + Di(n
?
s,∆t), (A3b)

nk+1
s,i = n??

s,i + Rs(n
??
i ,∆t/2), (A3c)

where superscripts denote time step or intermediate stage. (We note that a number of different
splitting variants are possible; the version presented here gave the most accurate structure
factor.) This split scheme has a number of advantages. It becomes an exact sampler (solver) for
the RDME in the limit ∆t→ 0, just like ISSA. It is notably more efficient than ISSA if there are
many events per time interval ∆t, and it can be parallelized in a straightforward manner using
domain decomposition. Since the number of molecules is always a nonnegative integer both
in multinomial diffusion sampling and in SSA, this property is also preserved for this scheme.
Moreover, since both sampling methods preserve the thermodynamic equilibrium distribution
(i.e., the Poisson statistics), the split scheme also preserves it for any allowable time step size.
However, this scheme has some disadvantages. First, the time step size restriction (23) for
diffusion becomes severe for fast diffusion. Second, SSA exhibits poor scalability with respect
to the number of molecules in a cell. This can be resolved by replacing SSA with the tau
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FIG. 9. Structure factors S(k̃) obtained from the SSA/2+MN+SSA/2 scheme (A3) for the
one-dimensional linearized FHD equation (11) with Γ̄/n̄r = 2 (e.g., an out-of-equilibrium monostable
Schlögl model). Different values of β are compared, with α = 0.1β, see Eq. (22). The exact result (13)
is depicted by the dotted line. Note that the modified wavenumber k̃ is used, see Eq. (33).

leaping method, but the nonnegativity is no longer guaranteed. Third, since the multinomial
diffusion method used here is only first-order accurate, the accuracy of the scheme is first order
even though Strang splitting is used. Constructing RDME-based diffusion methods that are
more accurate is possible [40, 43] but nontrivial and is not the focus of our work.

2. Structure Factor Analysis

In this section, we investigate the stochastic accuracy of the SSA/2+MN+SSA/2 scheme (A3).
To this end, we consider the structure factor S(k) of an out-of-equilibrium monostable Schlögl
model in one dimension (see Sections II B and II C). In the limit of many molecules per cell,
an asymptotic expression of S(k) can be obtained for the scheme as a function of ∆x and
∆t. The multinomial fluxes can be approximated by correlated Gaussian ones and the type of
analysis summarized in Appendix C can be applied; we do not give the details here for brevity.
Note that we present a similar structure factor analysis for our FHD-based schemes with some
background and details in Section IV B.

Figure 9 illustrates how S(k) deviates from the exact result (13) as ∆t is increased to ∆tmax

(equivalently, to β = 0.5), for α = 0.1β, see Eq. (22). While S(k) is accurately reproduced
at the reaction-dominated scales k`� 1 for all values of β, it becomes inaccurate for smaller
scales as ∆t approaches ∆tmax. We recall that for a system at thermodynamic equilibrium, the
split scheme exactly preserves the correct equilibrium distribution for any ∆t < ∆tmax. This
property ensures that, for α� β, good structure factors are obtained even for systems outside
of thermodynamic equilibrium, which exhibit a nonzero correlation length. For example, for
β = 0.25, the SSA/2+MN+SSA/2 scheme in Fig. 9 gives a notably more accurate S(k) than
the FHD-based explicit schemes in Fig. 2. Hence, even though this split scheme is found to
give only first-order accurate S(k), the resulting structure factor is relatively insusceptible
to increasing ∆t until the stability limit is approached.



29

Appendix B: Averaging Function ñ

In this appendix we show that the arithmetic mean should be chosen as the averaging function
ñ(n1, n2). Here we consider the diffusion-only case for a single species and investigate the equi-
librium distribution of the spatially discretized FHD equation (17). Since the true equilibrium
distribution for a bulk (infinite) system is known to be a product Poisson distribution from the
corresponding microscopic system consisting of molecules undergoing independent Brownian
motions, we choose ñ so that the resulting equilibrium distribution is as close as possible to
the true distribution. In addition, since the prevention of negative cell number densities is
one of the essential issues for the development of a robust FHD numerical scheme, special
care is taken to modify the form of ñ(n1, n2) for small values of n1 and n2. Here we focus on
the continuous-time case and do not assume any specific temporal integrator.
The corresponding microscopic system has Ncn̄∆V molecules, where n̄ is the mean number
density and Nc is the number of cells. The equilibrium distribution of the numbers of molecules
in each cell follows the multinomial distribution with equal probabilities 1/Nc. Hence, it is
straightforward to obtain the following second-order statistics of cell number density ni:

Var [ni] =
Nc − 1

Nc

n̄

∆V
, (B1)

Cov [ni1 , ni2 ] = − 1

Nc

n̄

∆V
for i1 6= i2. (B2)

Equivalently, from Eqs. (B1) and (B2), the structure factor is also obtained as

S(k) = n̄ for nonzero k. (B3)

If the FHD system (17) attains an equilibrium state, it can be shown that its second-order
statistics are completely characterized by 〈ñ〉, which is the equilibrium average of ñ over all faces:

Var [ni] =
Nc − 1

Nc

〈ñ〉
∆V

, (B4)

Cov [ni1 , ni2 ] = − 1

Nc

〈ñ〉
∆V

for i1 6= i2, (B5)

S(k) = 〈ñ〉 for nonzero k. (B6)

Comparing Eqs. (B4)–(B6) to the correct result Eqs. (B1)–(B3) suggests that one needs to
choose ñ so that 〈ñ〉 is as close as possible to n̄. It is easy to see that the arithmetic mean (AM)
would give the right answer:

〈
ñAM

〉
=
〈

1
2
(n1 + n2)

〉
= n̄. On the other hand, to calculate 〈ñ〉

for the geometric mean ñGM =
√
n1n2 or the harmonic mean ñHM = 2/(n−1

1 +n−1
2 ), one needs to

know the equilibrium distribution ρ(n1, n2) of two neighboring cells. However, under the reason-
able assumption that all three averaging functions give similar distributions ρ(n1, n2) allowing
only nonnegative number densities, it can be easily shown that

〈
ñHM

〉
≤
〈
ñGM

〉
≤
〈
ñAM

〉
from

the well-known inequalities among the Pythagorean means. In fact, in Fig. 3, this ordering
is observed from the structure factor of the diffusion-only system, see Eq. (B6). Hence, we
conclude that the arithmetic mean is the right choice for ñ.
However, if the arithmetic mean is employed without modification, Eq. (17) does not attain an
equilibrium state. This is because almost surely at some point on some grid face we will have
ñ < 0 so that the stochastic diffusive flux becomes undefined. The nonnegativity of cell number
densities is guaranteed if the stochastic diffusive flux through a face is turned off when the
number density of either cell sharing the face becomes zero. Specifically, under some technical
assumptions, it can be proven that if ñ(n1, n2) is a nonnegative function that satisfies

ñ(n1, n2) = 0 for n1 ≤ 0 or n2 ≤ 0, (B7)
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FIG. 10. The equilibrium cell number density distributions ρ(n) near n = 0 obtained from the
arithmetic mean averaging function (B8) (depicted by the red solid line), which uses the discontinuous
Heaviside function H , and Eq. (19) (depicted by the blue dotted line), which uses the smoothed Heav-
iside functions H0. The results are obtained from the one-dimensional diffusion-only FHD system (17)
having D = n̄ = ∆x = 1, A = 5, and Nc = 512 by using the EMTau scheme (24) with ∆t = 10−3.

then the number density of each cell never becomes negative. The nonnegative arithmetic
mean averaging function

ñ(n1, n2) =

{
1
2
(n1 + n2) if n1 > 0 and n2 > 0,

0 otherwise,
(B8)

does not allow negative density (i.e., ρ(n) = 0 for n < 0). However, due to the discontinuity of
ñ at n1 = 0 or n2 = 0, ρ(n) does not decrease to zero as n becomes zero (i.e., limn→0+ ρ(n) > 0)
and a delta function is formed at n = 0, see Fig. 10.

To understand this behavior, we consider numerically integrating Eq. (17) with a small time
step size ∆t > 0. Even if the density in a given cell n1(t) has a small positive value, ñ can
be large if the density in the neighboring cell n2(t) is large. In this case, n1(t + ∆t) can
become negative due to the stochastic diffusive flux. But, once n1 has become negative, the
stochastic diffusive flux is turned off, and due to the deterministic diffusion, n1 increases and
becomes positive again. Hence, as shown in Fig. 10, ρ(n) attains a peak in the negative density
region near n = 0. The width and height of the peak are proportional to ∆t1/2 and ∆t−1/2,
respectively, and the peak becomes a delta function in the limit ∆t→ 0.

We note that the averaging in Eq. (B8) can be expressed as ñ = 1
2
(n1 +n2)H(n1∆V )H(n2∆V )

where H is the Heaviside function. To avoid a discontinuity in ñ we can use a smoothed
Heaviside function to arrive at Eq. (19). Note that the smoothing is based on the number
of molecules in a cell (N = n∆V ) and the smoothing region 0 ≤ N ≤ 1 is chosen so that
the stochastic diffusive flux is modified only when there is less than one molecule in a cell.
In Fig. 10, we show the distribution ρ(n) near n = 0 obtained by the averaging function (19),
for a rather small mean number of molecules per cell, n̄∆V = 5. With the use of a smoothed
Heaviside function, the spurious delta function at n = 0 as ∆t → 0 is removed, and the
probability of negative density is greatly reduced for small ∆t.
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Appendix C: Linearized Equation Analysis

In this appendix we summarize how the discrete structure factor is obtained as a function
of ∆x and ∆t when a given spatiotemporal discretization is applied to the linearized FHD
equation (11), following the Fourier-space analysis developed in Ref. [58]. For simplicity, we
consider here the one-dimensional case.
Applying the spatial discretization given in Section III to Eq. (11) and taking a discrete Fourier
transform, we obtain an Ornstein–Uhlenbeck equation for the Fourier coefficient δn̂k(t),

d

dt
δn̂k = −Dk̃2δn̂k +

√
2Dn̄k̃2

V
W(D)

k − rδn̂k +

√
2Γ̄

V
W(R)

k , (C1)

where the modified wavenumber k̃ is defined in Eq. (33), and W(D)
k (t) and W(R)

k (t) are inde-
pendent standard GWN processes. Compared to the continuous-space case (see Eq. (12)), k is

replaced by k̃ due to the discrete Laplacian and divergence operators. Note that in this linearized
analysis Poisson processes have been replaced by Gaussian ones with the mean evaluated at the
ensemble average (i.e., macroscopic) values of the density. For convenience, we have replaced
complex-valued GWN noise processes by real-valued ones having the same noise intensities.
When the EMTau scheme (24) is used to solve Eq. (C1), we have the recursion

δn̂k(t+ ∆t) =
[
1− (Dk̃2 + r)∆t

]
δn̂k(t) +

√
2Dn̄k̃2∆t

V
W1 +

√
2Γ̄∆t

V
W2, (C2)

where W1 and W2 are independent standard normal random variables. We write this as

δn̂k(t+ ∆t)
d
=Mkδn̂k(t) +NkW, (C3)

where
d
= denotes being equal in distribution. For any given temporal integrator we can straight-

forwardly obtain analytic expressions for Mk and NkN
∗
k . For example, for the EMTau scheme,

Mk = 1− (Dk̃2 + r)∆t, (C4a)

NkN
∗
k =

2

V
(Dn̄k̃2 + Γ̄)∆t. (C4b)

The covariance of the noise NkN
∗
k for multinomial diffusion (A1) can most easily be obtained

from Eq. (C8) from the observation that, in the absence of reactions, the exact structure factor
S(k) = n̄ is obtained for any stable time step.
A similar procedure is applicable to numerical schemes having SSA for reactions. Since SSA
is an exact integrator, the linearized reaction part in Eq. (C1) is exactly solved. For example,
for the EM-SSA scheme (25), we have (cf. Eq. (C2))

δn̂k(t+ ∆t) =
[
−Dk̃2∆t+ e−r∆t

]
δn̂k(t) +

√
2Dn̄k̃2∆t

V
W1 +

√
Γ̄(1− e−2r∆t)

rV
W2. (C5)

While the expressions of Mk and NkN
∗
k become complicated for the predictor-corrector midpoint

schemes, a theoretical analysis is still tractable with the help of symbolic algebra tools.
By calculating Mk and NkN

∗
k for a given numerical scheme, the stability condition and the

structure factor can be obtained as follows. From the condition that the amplification factor
Mk should satisfy

|Mk| ≤ 1 for all k, (C6)
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the stability condition is obtained. For the EMTau scheme, we obtain

D∆t

∆x2
+
r∆t

4
≤ 1

2
. (C7)

The analytic expression for S(k) = V 〈δn̂kδn̂
∗
k〉 can be calculated from

S(k) =
V NkN

∗
k

1−M2
k

, (C8)

which is obtained from the time invariance relation 〈δn̂k(t)δn̂∗k(t)〉 = 〈δn̂k(t+ ∆t)δn̂∗k(t+ ∆t)〉
and Eq. (C3) [58]. From the analytical expressions of S(k) and S0(k) = lim∆t→0 S(k),
[S(kmax) − S0(kmax)]/S0(kmax) is easily obtained, the series expansion of which for small α
(and fixed β) gives Eq. (34) for the ImMidTau scheme. Similarly, series expansions for small
∆t (i.e., fixed ratio α/β) reveals the temporal order of accuracy of S(k).
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[17] K. Takahashi, S. Tănase-Nicola, and P.R. ten Wolde. Spatio-temporal correlations can drastically
change the response of a MAPK pathway. Proc. Natl. Acad. Sci. USA, 107:2473–2478, 2010.



33

[18] A.J. Mauro, J.K. Sigurdsson, J. Shrake, and P.J. Atzberger. A first-passage kinetic Monte
Carlo method for reaction-drift-diffusion processes. J. Comput. Phys., 259:536–567, 2014.

[19] S.S. Andrews and D. Bray. Stochastic simulation of chemical reactions with spatial resolution
and single molecule detail. Phys. Biol., 1:137–151, 2004.
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[67] F. Schlögl. Chemical reaction models for non-equilibrium phase transitions. Z. Phys.,



35

253:147–161, 1972.
[68] M. Vellela and H. Qian. Stochastic dynamics and non-equilibrium thermodynamics of a bistable
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[78] H.C. Öttinger and M. Grmela. Dynamics and thermodynamics of complex fluids. II. Illustrations

of a general formalism. Phys. Rev. E, 56:6633, 1997.
[79] P. Hänggi, H. Grabert, P. Talkner, and H. Thomas. Bistable systems: Master equation versus

Fokker–Planck modeling. Phys. Rev. A, 29:371–378, 1984.
[80] J. Keizer. Statistical Thermodynamics of Nonequilibrium Processes. Springer, Berlin, 1987.
[81] F.B. Usabiaga, J.B. Bell, R. Delgado-Buscalioni, A. Donev, T.G. Fai, B.E. Griffith, and

G.S. Peskin. Staggered schemes for fluctuating hydrodynamics. Multiscale Model. Simul.,
10:1369–1408, 2012.

[82] R. Erban and S.J. Chapman. Stochastic modelling of reaction-diffusion processes: Algorithms
for bimolecular reactions. Phys. Biol., 6:046001, 2009.

[83] S.A. Isaacson. The reaction-diffusion master equation as an asymptotic approximation of
diffusion to a small target. SIAM J. Appl. Math., 70:77–111, 2009.

[84] D. Bernstein. Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm.
Phys. Rev. E, 71:041103, 2005.

[85] S.A. Isaacson and C.S. Peskin. Incorporating diffusion in complex geometries into stochastic
chemical kinetics simulations. SIAM J. Sci. Comput., 28:47–74, 2006.

[86] H.-W. Kang, L. Zheng, and H.G. Othmer. A new method for choosing the computational
cell in stochastic reaction-diffusion systems. J. Math. Biol., 65:1017–1099, 2012.
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