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The density~tensity dynamical correlation function of a simple fluid in a finite 
container subject to a constant temperature difference is explicitly obtained. In 
small systems, such as those realized in computer experiments, new peaks 
appear in the scattering spectrum, even at equilibrium, arising from standing 
waves produced by the fluctuations. Away from equilibrium, these peaks are 
asymmetric in the same manner as the Brillouin lines. The macroscopic limit is 
also considered and the correction to the usual "infinite system approximation" 
is explicitly obtained. 
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1. I N T R O D U C T I O N  

Some years  ago it was real ized tha t  nonequ i l ib r ium modi f ica t ions  to the 

dynamica l  co r re la t ion  funct ions for h y d r o d y n a m i c  f luctuat ions  were 
measu rab le  by  l ight sca t ter ing  exper iments .  (1-3) Yet, in con t ras t  to the 

weal th  of theore t ica l  t rea tments  of  the p rob l em (refs. 4-8 ;  see ref. 9 for a 
recent  review), there  remains  a pauc i ty  of exper imenta l  results,  due to the 
numerous  compl i ca t ions  ar is ing when pe r fo rming  smal l -angle  scat ter ing 
exper iments .  (lw12) Ano the r  p romis ing  a p p r o a c h  is by direct  c o m p u t e r  
s imula t ion  of an ou t -of -equ i l ib r ium system, such as a fluid subjec ted  to a 
cons tan t  t empe ra tu r e  difference. (13)'3 Us ing  s tochast ic  par t ic le  s imula t ions  

based  on the Bo l t zmann  equat ion ,  (15) nonequ i t ib r ium modi f ica t ions  to the 
stat ic cor re la t ion  funct ions have been measu red  for a di lute  gas (~6'17) (see 
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also ref. 18). Thus, a new influx of data from computer experiments is 
stimulating renewed interest in analytical work. 

The theoretical aspects of the problem, as relevant to computer 
experiments, present some interesting features. The finite-size (or 
geometrical) effects are in general as important as the dynamical effects and 
consequently the boundary value problem must be considered with great 
care. This precludes some of the usual approximations developed for 
macroscopic systems. (9) Furthermore, since the system is typically closed, 
the conservation of total particle number plays an equally important role. 
These effects have been considered before, since they do influence the 
light scattering results. (19 21/ In particular, the general form of the non- 
equilibrium scattering function for a liquid with vanishing thermal expan- 
sivity coefficient has been obtained by Satten and Ronis. (2~ This expression 
proves to be quite complicated and one is unfortunately reduced to 
numerical evaluation. In nonequilibrium light scattering experiments only 
the integrated scattering amplitude is observable, so obtaining a simple 
expression for the full scattering function has not been important (a nice 
derivation of the integrated spectrum is presented in ref. 21). This is not the 
case for computer experiments where the entire line shape can be measured. 
It is therefore highly desirable to simplify the general expression in order to 
explain the measured spectrum in terms of simple physical processes. 4 
This is the main purpose of this paper and is presented in Section 3. In 
Section 4, we also discuss limiting forms of the scattering function for 
various macroscopic regimes. In particular, corrections to the usual 
"infinite system approximation" are presented. 

2. BASIC EQUATIONS 

A common theoretical approach for obtaining the scattering function 
is the Landau Lifshitz fluctuating hydrodynamics formalism, (22) mainly 
because of its relative simplicity as compared with more fundamental 
approaches33'8) As such, we restrict our attention to fluctuation 
phenomena on hydrodynamic scales rather than atomic scales (which are 
more suitably treated by kinetic theory). In this paper we apply this 
formalism to a simple fluid model with the following characteristics: 

1. The thermal expansion coefficient is zero (water at 4~ and nor- 
mal fluid liquid helium near the 2 point satisfy this condition). 

2. The transport coefficients and the sound speed are constants, 
independent of temperature. 

4 So far this program has been achieved only for systems where the boundary effects are 
neglected3 9) 
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By the first assumption, the momentum equation is decoupled from the 
energy equation and in turn yields a constant macroscopic density 
throughout the system. (2'6) While these assumptions considerably simplify 
the analysis, it is known that the main physical aspects of the problem are 
preserved. (9) The detailed analysis, including the effect of an imposed strain 
and the evaluation of all the various static and dynamic correlation 
functions, is quite lengthy and has been presented elsewhere. (23) In this 
paper, we calculate the dynamic density~density correlation function, 
which is commonly measured in molecular dynamics simulations. In light 
scattering experiments this function is associated with the scattered 
spectrum. (24) 

'The fluid is confined between two parallel planes located at y = 0 and 
y = L, which act as infinite reservoirs, so that by fixing their temperatures 
one can impose the desired heat flux across the system. The two boundaries 
perpendicular to these walls are taken as periodic boundaries (this con- 
struction is typical for computer simulations(~3)). As can be easily checked 
from the macroscopic hydrodynamic equations, at the stationary state the 
pressure is constant, the velocity is zero, and the temperature is a linear 
function of the imposed gradient (note that there is no instability because 
we do not consider external fields in our formulation(25~). 

To study the fluctuations, we first linearize the fluctuating 
hydrodynamic equations around the macroscopic reference state. Since we 
are mainly interested in the influence of the nonequilibrium constraint and 
since we have periodic boundary conditions in the x and z directions, we 
limit ourselves to reduced variables defined by 

1 fo'~X fo "~" " dz 6h(x, y, 6h(y)=-~ dx z) (1) 

where S =  LxL~ is the wall cross section and cSh is the fluctuation of the 
hydrodynamic quantity h. In computer experiments, the system is typically 
divided into a set of parallel cells and the quantities measured are precisely 
the reduced variables. Our use of reduced variables is equivalent to setting 
the "parallel" Fourier components of the hydrodynamic variables to zero, 
which considerably simplifies the analysis. It is easy' to check that the 
reduced equations for the x and z components of the velocity fluctuations 
decouple from the other variables and are not influenced by the constraint. 
We will therefore concentrate our attention on the remaining equations for 
the mass density 6p and the y component of the velocity 6v, 

0 0 
Ot 6p = -Po -~y 6v (2) 

~6v= 0 l ( 4 t  1 ) 0 2 l_~y 
- -e~-fY6P+po\3 +~  OY ---Sg)v+-po F(y,t) (3) 
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where the subscript 0 refers to macroscopic quantities, t/ and ~ are the 
shear and bulk viscosity coefficients, and cr = (~?Po/OPo)To/Po. The random 
component of the stress tensor F(y, t) is a white noise process in space and 
time; it is zero on average and has a correlation ~22) 

(F(y , t )F(y ' , t ' ) )=2[kBTo(y) /S] (4r l /3+() f (y -  y ' ) 6 ( t - t ' )  (4) 

where kB is the Boltzmann constant and To(y ) is the macroscopic tem- 
perature profile, To(y) = To(y = 0) + 7Y. Since the fluctuating stress tensor 
is a function of the local temperature, the nonequilibrium effects in this 
model arise from the inhomogeneous distribution of Langevin sources. 

If we now we assume that the total volume of the system is fixed (not 
fluctuating), then the boundary condition for 6v follows from the conser- 
vation of total mass: 

fo~ 6v(y) y=o,L dyfp(y,  t ) = 0 ~ p o  = 0  (5) 

(i.e., the boundary acts as a rigid wall). 5 No boundary condition for 6p is 
required, since its evolution is entirely specified by the initial conditions for 
6p and 6v plus the boundary conditions for 6v. From a physical point of 
view, this reflects the fact that the walls can only constrain the velocity and 
the temperature, but the density is governed by the internal dynamics of 
the fluid. The full mathematical aspects of this problem are reported 
elsewhere. r Interestingly, we note that simply requiring that the total 
volume be fixed specifies entirely the boundary value problem for reduced 
variables. 

From the above geometry and boundary conditions, it is easy to check 
that the eigenfunctions associated with our evolution equations (2) and (3) 
are simply cos(kzcy/L) for 6p and sin(kzty/L) for 6v. We therefore expand 
the solution as 

kzcy 
~p(y, t) = ~pk(t) cos - - "  6po(t ) = 0 (6a) 

k=l L ' 

6v(y, t) = ~ 6v~(t) sin krcy (6b) 
L k=0  

5 In computer simulations the containing walls are strictly rigid. The wall is a fixed plane and 
the particle's velocity is changed the instant it touches the wall. Typically, the particle is ther- 
realized, so that its velocities before and after striking the wall are entirely uncorrelated. In 
this way, the wall also acts as perfectly conducting, no-slip boundary. This boundary 
condition on 6u u and 6T, however, is unnecessary for the problem considered in this paper. 
Our previous studies have discussed the appropriateness of the above boundary conditions 
when considering computer experiments with thermalizing boundaries. ~17,26) 
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Taking the Fourier transform in time, after some algebra one finds 

4kBFpo6(Co + ~o') k 2 k '2 
(•pk(O))6pk,(CO'))= ~V(c4+4~o2F2 ) Tk .k , -~-z2k ,Z_z ,2  (7) 

where V is the total volume of the system, c =  (~po) ~/z is the (isothermal) 
sound speed, F =  (4r//3 + ~)/2po is the sound attenuation coefficient, and 

z2 c~ZL2(c 2 + 2icoF) 
- ~2(c 4 + 4~o2F2 ) (8) 

The function Tk, k, is defined as 

1 f~ k'ay k'~y Tk,~,=~- s dycos--~cos--s  To(Y) (9) 

Although Eq. (7) completes the solution for the density correlation 
function, the physical aspects are hidden in its present form. To proceed, 
we must either transform back to real space to obtain (6p(y, t)6p(y', t ')) 
or, better, compute the scattering function, defined as (27) 

Sq(CO) = (V/pom)(1/L 2) dy dy' exp[ i2nq(y-  y')/L] 

x do' (6p(y, o)) bp(y', co')) (10) 
0(3 

where m is the particle mass. In this paper we focus on the properties of the 
scattering function Sq(e)). Note that in computer experiments this function 
is equivalent (at hydrodynamic scales) to the Fourier transform in time of 
the Van Hove total correlation function, (~7) 

Gq(t) = ~  exp[i2nq 1, �9 ra(t)/L ] exp[ - i 2 n q l , "  rb(t = 0)/L] 
a I b = : l  

(11) 

where ra, r b are the positions of particles a and b, respectively, ly is the unit 
vector in the y direction, and N is the total number of particles in the 
system. The scattering function Sq(c~) is obtained in light scattering from 
the measured spectrum. (z4) In the limit of large equilibrium systems, where 
the boundary effects may be neglected, the scattering function can be 
directly obtained from (7) by the replacement k ~ 2q, k ' ~  -2q.  In finite 
systems, however, there is no similar simple step; we must first obtain the 
density fluctuations in real space and compute Sq(o)) from Eq. (10). 
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In our definition for Sq(OO), we integrate over the entire space (from 
y = 0 to L) and do not use a weighting function or "beam shape" function. 
It might appear that this is the origin of our finite-size effects, yet the 
analysis of Satten and Ronis (2~ demonstrated that even if the scattering 
subvolume is small, boundary effects are significant in nonequilibrium light 
scattering experiments when the sound attenuation length is comparable to 
the container dimensions. In computer simulations with containing walls 
(i.e., not periodic boundary conditions), the boundary effects are always 
important, even if only a subvolume of the system is considered. Typically, 
however, the entire system is used to minimize the statistical errors. 

Following the above discussion, one finds after some tedious 
calculations 

Sq(CO ) - 32kB Ta Fq 2 
rcmc 4 (co2L2/lz2c2 -- 4q2) 2 + 64q4o)2F2/c 4 

4q 2 ~z 
x Re q2 -t n(4q 2 _ z2 ) z tan -~- 

Iz[ 2 (sinErc(z- z*)/2] s inEx(z+z*) /2] )  

+ 4x Icos(xz/2)l 2 \ z - ~  u z +  z* ,/ 

+~-zq~(4q2 z2 ) l+rcz(4q2_z2 ) 

where Ta and 7 are the (space) averaged temperature and the temperature 
gradient, respectively. It should be understood that the above result is not 
new. It may be obtained from the formulation of Satten and Ronis (2~ or 
that of Schmitz and Cohen (2~) restricted to reduced variables and perfectly 
rigid walls. Before discussing our main contribution, let us plot Sq(e)) for 
the range of parameters appropriate to computer experiments. We present 
the exact solution (12) for thermodynamic equilibrium (i.e., 7 = 0) in Fig. 1 
and a nonequilibrium case in Fig. 2 (in each case q = 1 ). Besides the usual 
Brillouin lines, (24) one also sees two sharp peaks at lower frequency. The 
location of these extra peaks is found to be at coLic (independent of the 
harmonic number q). Although it is clear that the extra peaks arise entirely 
from the influence of the boundary, it is impossible to understand much 
about their nature from the exact expression (12). At this point, one could 
argue that it is possible to obtain Sq(O)  numerically by solving the full 
hydrodynamic equations, without any approximation, (17'26) thus casting 
some doubt on the usefulness of the above analysis. Yet the formal 
expression (12) is useful if we can obtain from it simple limiting forms of 
Sq(CO) for the various regimes of interest. 
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Fig. 1. 
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The scattering function Sq((J)) 

o,o \ o,9 1,8 
A p p r o x .  

as a function of frequency for q = l  and y = 0  
(equilibrium). The parameters are taken so as to correspond to those used in the computer 
experiment described in ref. 17: L = 50 mean free paths (mfp), e = 5.1 x 10 2, 2kB ToF/mrtc 4= 
8.46• -2, po=400  particles per (mfp) 3. Both the exact solution [Eq.(12)]  and the 
approximate solution [Eq. (14)] are shown. 
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Fig. 2. 
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The scattering function Sq(OJ) as a function of frequency for q = 1 and yL/T a = 4/3 
(nonequilibrium), 2k B T,,F/m~c4= 6.91 • I0 -z. See caption to Fig. 1 for details. 
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3. SCATTERING FUNCTION IN COMPUTER EXPERIMENTS 

We start by introducing the dimensionless parameters (5 and e as 

co F 2nq 
0 5 = - - ;  e = - - - -  (13) 

(27cq/L)c c L 

with the restrictions & ~ o ( 1 )  and e ~ l .  The latter condition must be 
fulfilled in order to remain in the hydrodynamic regime. ~24) With the above 
requirements, it is possible to simplify considerably the expression (12). 
This involves matching Pade-like approximations around the various peaks 
and the final result depends crucially on the allowed values of q. 

In this section we consider Sq(CO) in the limit of small q (typically q = 1 
or q = 2 ) .  In computer experiments the wavelength (L/q) on which the 
dynamic correlations are measured will have to be of the order of the 
system size if one wishes to remain in the hydrodynamic regime (e between 
10 -1 and 10 2 for q =  1). Moreover, the statistical error in the data con- 
strains one to consider only the zero wavenumber in the parallel direction 
(i.e., reduced variables). The limit we are using is thus appropriate for com- 
parison with particle simulations. Under these restrictions, one finds after 
some algebra 

2kB T .F  ~2 1 
Sq(O))  = mT~c 4 cos(2~q(5) + 1 -t-2rtEq2e2(54 ( ( 5 2  1)21_ 4(5292 

1 2L7 ~e x qrcT~ ((52 _ 1 )2 + 4ch2e2 

x ((52+ 1)[1--cos(2~q(5)]  +Src  ~ q (5 - -5  sin2(2zcq(5) (14) 

The front factor represents the equilibrium contribution. The term 
[((52_ 1)2+ 4(52e2]- 1 yields the Brillouin lines; its maxima are at o5 = _+1. 
The term [cos(2~q(5)+ 1 + 2~2q2e2(54] -1 reflects the finite-size effect and is 
responsible for the extra peaks that occur for (5 = +l/2q, +_3/2q ..... The 
absence of terms nonlinear in the temperature gradient 7 is a result of the 
two assumptions that are the basis of our fluid model (see Section 2); for 
the same reason, we have no Rayleigh line. In Figs. 1 and 2 we see that the 
approximation is already quite good, at least near the peaks, for the 
parameters of the computer simulation described in ref. 17 (e ~ 5 x 10-2). 
Note that an alternative, but somewhat more cumbersome, approximation 
has already been provided in ref. 17. 

The nonequilibrium terms are odd in frequency, yielding the asym- 
metry seen in Fig. 2. The part corresponding to the Brillouin lines is a 
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double Lorentzian, in agreement with previous calculations where the 
boundary effects are neglected. (9) Its coefficient, however, is different as a 
direct result of the influence of the boundaries. To see this, let us consider 
in more detail the origin of the asymmetry in the spectrum. Satten and 
Ronis (2~ found a modulation of the Brillouin lines because of the boundary 
effect and a smaller asymmetry than that obtained in calculations where 
the boundary effects were neglected. In our limit, the finite-size peaks do 
not overlap with the Brillouin lines, but are well separated. Yet a detailed 
analysis of the various terms in the exact expression (12) shows that the 
asymmetry arises mainly from the finite-size effect. Consider, for instance, 
the nonequilibrium contribution Sqr which, from the exact expression, 
may be written as the product of two terms: 

32kB Ta Fq 2 
S~e(~) = ~mc 4 ((.02L2/Tcac 2-4q2) 2 q- 64q4~2F2/c 4 

I ( lrz(4q 2-z2 ) 2 ( z Z  + 4q 2 ) rcz)] ?L iz 2 1 + tan -~- (15) 
x Re -~--:q ( 4 ~ - - z 2 )  

The first term is the usual Lorentzian responsible for the Brillouin lines, 
while the second contains all the nonequilibrium effects. As seen in Fig. 3, 

8 

A, A ' 
- - - - -  - 0 

i 
i I - 2  
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I I 

I 
I 
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I I I I 

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 
CO 

Fig. 3. ( ) The first and (--) second terms of the nonequilibrium contributions to the 
scattering functions Sqe(co) [see Eq. (15)]. The first term is a Lorentzian with maxima at 
coL/c= +2zt. Note that the maxima of the second term are at coL/c= in, • 

8 2 2 / 5 2 / 1 - 2 - 2 0  



304 Malek Mansour e t  ai. 

where each of the terms is depicted, the second term has extrema located at 
coLic = +z,  + 3~z ..... i.e., at the locations of the finite-size peaks. The origin 
of the asymmetry in the Brillouin lines seems therefore to be dominated by 
the boundary effects, at least for the range of parameters we are con- 
sidering. For macroscopic systems, such as laboratory systems used in light 
scattering experiments, the interplay between bulk and boundary effects 
will be different. Though nonlinear effects are not considered in our 
analysis, (28) for computer experiments, due to the small system size and the 
presence of reflecting boundaries, the finite-size effect seems to dominate 
over nonlinear effects even though the imposed nonequilibrium constraints 
are extremely large (see ref. 21 for more details). 

Consider now the finite-size peaks; an obvious explanation for the 
extra lines at odd values of e)L/rcc is the existence of stationary sound 
waves across the system, as originally suggested in ref. 19 for equilibrium 
systems and later remarked in ref. 20 for nonequilibrium systems. The den- 
sity fluctuations are converted to sound waves, which are reflected by the 
rigid walls, giving rise to stationary waves. For this picture to be con- 
sistent, however, we have to check two consequences. First, for a system 
with periodic boundary conditions in the y direction, the extra peaks must 
disappear, since for the stationary waves to be formed, one needs coherent 
sound waves crossing. It is easy to check theoretically that this is indeed so. 
It is also known from equilibrium computer simulations measurements that 
there are no such peaks (some other effects can, however, be observed if the 
time correlation functions are considered for lag times greater than the 
sound crossing time in the system129)). 

Next, the perpendicular current static correlation function must 
obviously contain this effect. At equilibrium this function is delta- 
correlated. The random distribution of the phases of the Langevin sources 
ensures time-reversal symmetry and thus eliminates any observable effect in 
this function. In nonequilibrium systems, however, the average amplitudes 
of the Langevin sources are not equal and the standing waves produce an 
observable effect. To see this, consider the (perpendicular) velocity-velocity 
static correlation function, which is given by 

( 6v( y ) 6v( y' ) }~t 
kB To(y) cS(y - y') 

poS 

~, krcy .  k'rcy' 
= sin T sm 

k + k '  odd L 

16kBTkk' 
• poSrc2[(k2 _ k,2) 2 + 8rc282k2k,2(k2 + k,2) ] (16) 
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The term on the rhs is the nonequilibrium contribution; it is plotted in 
Fig. 4 for various values of L. Its form clearly suggests the existence of 
spatially damped standing waves across the system. In order to be sure, 
however, we have to compute the asymptotic behavior of (16) in the limit 
L ~ oo (e ---, 0). For  the sake of simplicity, we set 

y ' / L = l / 2 ,  y / L = l / 2 + r  (-1/2<~r<~l/2) (17) 

and limit ourselves to the study of the function 

g,v(r) =- ( Sv(y = L/2 + Lr) cSv(y' = L/Z))  
k. :to(r) 

Po V 
- - 6 ( r )  (lS) 

which represents the nonequilibrium part of (16) evaluated with respect to 
the center of the system. To dominant  order in e one finds (see ref. 23 for 
details) 

g~,(r) ~ (--kBT/2~zl/ZpoS) re 1/2 exp(_re-]/27:]/2/2) sin(re 1/2gt/2/2 + re/4) 

(19) 

Clearly, for any given value of r, the nonequilibrium contribution to the 
static velocity autocorrelation function behaves as O(exp{ -1 /x / ' ~} )  and 
therefore vanishes exponentially with the system size L. On the other hand, 
for fixed L, the above correlation function is significantly different from 
zero only for Ir] ~ O(x/-~). The correlation length is therefore of the order 

1 x 10 -5 

.50 
L=IO00 

-.50 

-1 
I ; I I 

0 .200 AO0 .600 .800 
Y'/L 

Fig, 4. The nonequilibrium contribution to the correlation function (6v(y)~v(y'))st a s  a 
function of y/L for y' = L/2. The various curves represent various values of the system length 
L; the other parameters are taken so as to correspond to those used in the computer 
experiment described in ref. 17 (see caption to Fig, 2). 
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of the square root of the system size L. This asymptotic result is nicely 
supported by the numerical evaluations of the corresponding series [see 
Eq. (16) and Fig. 4]. Although the correlation length is large, the entire 
function vanishes in the limit of infinite systems. 

This is an important result, since it proves that in the presence of a 
temperature gradient, the existence of the above oscillatory long-ranged 
correlation function is entirely due to the boundary effects. The same 
asymptotic behavior is found for the nonequitibrium contribution to the 
static density autocorrelation function. This, however, is not the case for 
the density-current static correlation function, (23) since it arises from the 
broken time-reversal symmetry and is responsible for the asymmetry in the 
Brillouin lines, even in an infinite medium (9) (see the next section). 

These properties of the static correlation functions definitely establish 
the presence of standing waves across the system generated by fluctuations. 
They also show the existence of tong-range oscillatory correlation functions 
and the dominant role of the boundary effects on the statistical properties 
of nonequilibrium systems. From an experimental point of view, the effect 
is difficult to observe in light scattering measurements, as discussed in 
ref. 20. 

4. S C A T T E R I N G  F U N C T I O N  IN FINITE M A C R O S C O P I C  
S Y S T E M S  

In this section we study the limiting form of Sq(CO) appropriate for 
macroscopic systems. The value of the harmonic number q depends on 
the wavelength of the incident laser beam used when performing light 
scattering experiments as well as on the system size L (perpendicular to 
the incident beam) and the scattering angle. It is customary to express the 
scattering function in term of the wavenumber K, which is fixed by the 
characteristics of the experimental setup. Obviously 

K= 2gq/L (20) 

Typically K is of the order of 103-105 cm -t, and L is of the order of 1 cm, 
so that q can take values ranging from a few hundreds to several 
thousands. In the previous section we derived a limiting form of Sq(O)), 
Eq. (14), in the limit of small q. The question is the limit of its validity 
when q becomes large. Careful analysis shows that the expression (14) 
remains valid provided 

q xfle< 0(1) (21) 
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Interestingly, we note that the condition (21) is fulfilled in Beysen's 
experiments ~m) ( K ~ 2  x 10 3 cm -~, L = 0 . 5  cm, e ~  10 4), so that expression 
(14) is applicable. The only difference with the molecular dynamic case 
comes from the fact that now the harmonic number q is large (about 150). 
As a consequence, we have a fairly large number of finite-size peaks, which 
now may overlap with the Brillouin lines, giving rise to a spectrum 
somehow similar to the results of Satten and Ronis. (2~ The full discussion 
of this problem has been given by the above authors and we do not have 
anything new to add, except perhaps to point out once more the simplicity 
of our limiting form, Eq. (14), as compared to their results. Note finally 
that recently Schmitz and Cohen (2~) were able to derive a fairly simple form 
for the integrated spectrum and also discussed the nonlinear effects. 

For increasing values of the harmonic number q, the restriction (21) is 
no longer guaranteed and the expression (14) gradually loses its validity, 
while at the same time the boundary effects are expected to become less 
and less important. To study this limit, let us assume that q is large enough 
so that the following restriction is fulfilled: 

qe> 1 

Then, to dominant order in ~ one finds 

2 k u T  u I'/C 2 {[ 
S K ( o o )  ~ - -  

rnr~c2 (052 _ 1)2 + 4052KZF2/c 2 

47 053F/C ( 
+ T-~ (052_ 1)2 + 4052KZF2/c 2 1 

(22) 

1 c 1 1 (205 2 - 1 ) 
L F K  2 

, c 3 2)} 
L F K  2 ~ 5  (23) 

If the system size L is much larger than the sound attenuation length 
c F - I K - : ,  then the finite-size effects are negligible and the result is precisely 
the well-known "infinite system approximation" (see, for example, ref. 9). 
Near the Brillouin peaks (05 ~ 1), the finite-size corrections are strictly 
negative and as a consequence both the heights and the asymmetry of the 
peaks are reduced. In most of the equilibrium light scattering 
experiments ~24'3~ K is typically of the order of 10-Scm -~ and F ~  
10-3 cm: sec-1, so that the finite-size correction (height reduction) does not 
exceed 1 or 2% and so far has not been observed (see ref. 19 for more 
details). This is not the case for nonequilibrium systems, where the reduc- 
tion of the asymmetry is indeed an experimental fact. (10~2) 

5. C O N C L U S I O N  

We have studied the scattering function of a simple fluid under a tem- 
perature gradient. By considering a fluid model with vanishing thermal 
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expansivity coefficient, we were able to derive simple limiting forms for the 
above function in various limits of interest. In particular, the correction to 
the usual infinite-system approximation was explicitly derived. 

The main purpose of this paper, however, was to understand in terms 
of simple physics the line shape of the scattering function in very small 
systems, such as the one realized in computer experiments. The equilibrium 
theory of light scattering has been developed over the years with very prac- 
tical considerations in mind, e.g., the possibility of determining important 
fluid properties; molecular dynamics simulations profit from these results. 
The nonequilibrium formulation of this theory in finite systems promises to 
extend the usefulness of this measurement tool. The richness of the spec- 
trum yields a number of independent measures of the static and dynamical 
properties (e.g., the sound speed and the acoustic damping may be 
obtained from the Brillouin lines or from any of the standing wave peaks). 
Interface properties, such as the effective reflection coefficient, may also be 
studied by the inclusion of more complex boundary conditions, such as 
accommodating walls or "rough" boundaries/2~ 

We have recently undertaken a systematic study, by computer 
experiment, of the nonequilibrium dynamical correlation functions in a 
dilute gas. This effort parallels our earlier work on static correlation 
functions. ~ Preliminary results exhibit all of the phenomena described 
above, specifically the presence of the standing wave peaks and a gradient- 
dependent asymmetry for all of the lines. The oscillatory form of the static 
velocity-velocity correlation function (Fig. 4) has also been observed/32) A 
more complete comparison between our simple model and computer 
experiments must await the completion of more extensive simulations. (33~ 
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