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Measurement bias of fluid velocity in molecular simulations
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Abstract

In molecular simulations of fluid flow, the measurement of mean fluid velocity is considered to be a straightforward

computation, yet there is some ambiguity in its definition. We show that in systems far from equilibrium, such as those

with large temperature or velocity gradients, two commonly used definitions give slightly different results. Specifically, a

bias can arise when computing the mean fluid velocity by measuring the mean particle velocity in a cell and averaging

this mean over samples. We show that this bias comes from the correlation of momentum and density fluctuations in

non-equilibrium fluids, obtain an analytical expression for predicting it, and discuss what system characteristics (e.g.,

number of particles per cell, temperature gradients) reduce or magnify the error. The bias has a physical origin so

although we demonstrate it by direct simulation Monte Carlo (DSMC) computations, the same effect will be observed

with other particle-based simulation methods, such as molecular dynamics and lattice gases.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Since the discovery of long-time tails by molecular dynamics computations circa 1970 [1], it has been

evident that molecular simulations of hydrodynamic phenomena allow insight into fluid behavior at mi-

croscopic scales. As computational power has increased, molecular computations have become increasingly

useful tools for analyzing complex flow phenomena of both practical and theoretical interest, such as vortex

shedding, thermal convection, Rayleigh–Taylor mixing, and other forms of instability [2]. More recently,

new applications have arisen where the distances involved may be too small for hydrodynamic equations

alone to adequately characterize the full range of fluid behavior, and augmentation with molecular sim-
ulations becomes a necessity. Nanoscale devices are one important example [3]; the study of fluctuations in

fluids driving Feynman ratchets and Brownian motors are another [4].
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In simulating non-equilibrium systems, such as fluid flows, special care is often necessary when mea-

suring hydrodynamic variables. For example, it is well known that subtle issues exist in measuring tem-

perature, partly because temperature is unambiguously defined only at equilibrium [5,6]. Furthermore,
defining temperature in terms of translational kinetic energy requires some care due to the instantaneous

fluctuations of the center of mass velocity. Independence of variables must be considered; many hydro-

dynamic variables that are uncorrelated at thermodynamic equilibrium are correlated in non-equilibrium

systems due to mode-coupling effects [7].

The measurement of fluid velocity is considered less controversial than that of temperature. Nonethe-

less, it is important to remember that fluid velocity is a hydrodynamic variable, rather than a mechani-

cal variable like momentum density. In fact, as we demonstrate in this paper, a subtle measurement bias

can appear when mean fluid velocity is computed in particle-based molecular simulations such as molec-
ular dynamics [8], direct simulation Monte Carlo (DSMC) [9] and lattice gases [10]. This bias is present

in even the simplest molecular simulations; we find it in measuring fluid velocity for a closed system

consisting of a monatomic hard sphere gas contained between thermal walls. Furthermore, we show that

this bias has its origin in the correlation of non-equilibrium fluctuations and is absent at thermody-

namic equilibrium and also in the thermodynamic limit (i.e., number of particles going to infinity at fixed

density).

We begin by defining the important quantities and measurement methods in Section 2. In Section 3 we

present some illustrative examples of the bias in simulations of simple systems. We analyze the origin of the
bias in Section 4 and confirm that our analysis agrees with the results shown in the previous section, and

verify specific points with results from additional simulations. Section 5 gives a brief summary and some

closing remarks, and indicates future work.
2. Measurement of fluid velocity

For particle-based simulations, there are two common, general methods for calculating fluid velocity.
Because differences between these methods form an important part of the context of this paper, we will

define each of them before proceeding to a discussion of the actual phenomenon.

We assume a simulation that partitions the system into K cells and gathers statistics separately for each

cell. Cell k has volume Vk; during a time tj it contains NkðtjÞ particles, of mass m, so Mk ¼ mNk is the fluid

mass in the cell. The total number of particles in the system, NRðtjÞ ¼
PK

k¼1 NkðtjÞ, will, in general, vary with

time, though for a closed system it is necessarily a conserved quantity.

The measurement of an intensive macroscopic variable like instantaneous fluid velocity uk or temper-

ature Tk will generally be an average over particles in that cell. Within a given cell, the velocity of particle i is
vi and its momentum is mvi; the total fluid momentum in cell k is Jk ¼

PNk
i2k mvi. The notation i 2 k denotes

the index i ranging over the particles within cell k. The instantaneous fluid velocity is the center of mass

velocity for the particles in the cell, uk ¼ Jk=Mk. Since we take the particles to have equal mass, this fluid

velocity equals the average particle velocity vk ¼ ð1=NkÞ
PNk

i2k vi. Note that the overbar indicates an average

over all particles in a cell. We reserve angle brackets for averages over all samples, for example hNki, as
defined below.

The mean fluid velocity huki is an average over samples, which may be taken over time for steady state

flows or over an ensemble of systems for time-dependent flows. In this paper we focus on the former al-
though the bias described below is present in both scenarios. In evaluating huki from samples of particle

velocities, there is some flexibility in computing the statistics. Two methods find common usage, which we

now define.

The first, which we will call cumulative average measurement (CAM), sums the velocities of all particles

in a cell over all samples, then divides this cumulative total by the cumulative total number of particles in
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the cell to yield a mean velocity per particle for the cell. That is, for cell k over S samples and with tj
denoting a particular sample time, the mean fluid velocity by the CAM definition is

hukic ¼
PS

j¼1

PNkðtjÞ
i2k viðtjÞPS

j¼1 NkðtjÞ
¼ hJki

hMki
; ð1Þ

where

hMki ¼ mhNki ¼
m
S

XS
j¼1

NkðtjÞ

and

hJki ¼
1

S

XS
j¼1

JkðtjÞ ¼
1

S

XS
j¼1

XNkðtjÞ

i2k
mviðtjÞ

are the mean mass and momentum, respectively, in cell k. These averages are similarly defined for each

component so huxkic ¼ hJx
k i=hMki, where the superscript indicates the x component of a vector.

The second method, which we call sample averaged measurement (SAM), obtains the average particle
velocity in a cell at each sample, vkðtjÞ, then averages these means over all samples:

hukis ¼
1

S

XS
j¼1

vkðtjÞ ¼
1

S

XS
j¼1

1

NkðtjÞ
XNkðtjÞ

i2k
viðtjÞ: ð2Þ

From the above definitions, hukis ¼ hJk=Mki which is evidently different from hukic ¼ hJki=hMki; compare

Eqs. (1) and (2). The SAM definition is a natural choice when it is useful to measure the instantaneous fluid

velocity, for example to monitor the relaxation towards a steady state, and these data are post-processed to

obtain mean values.

Note that while hNki and hJki are the same for both SAM and CAM, this is not true in general for huki.
Although hukis and hukic give the same results at thermodynamic equilibrium and in the limit hNi ! 1,

they differ for finite, non-equilibrium systems. In fact, it is with sample averaged measurement that an
interesting bias can occur, which we now illustrate for two similar systems at steady state but far from

thermodynamic equilibrium.
3. Simulation results

Our simulations were of a simple closed system containing a monatomic hard sphere gas (particle mass

m ¼ 1 and diameter d ¼ 7:5� 10�2) bounded by thermal walls at each end in the x-direction and having
periodic boundaries in the y- and z-directions. The total number of particles was NR ¼ 2000, except in one

run where it was increased to NR ¼ 5000. The system was divided into K ¼ 20 rectangular cells of equal size,

distributed linearly between the two ends. Distance between the thermal walls was L ¼ 2:25 and the cell

volume was Vk ffi 0:57, giving a mean free path of k ¼ L=10 and mean time between collisions of 2.6� 10�3 at

thermal equilibrium when using a gas density of q ¼ Mk=Vk ffi 175, which corresponds to a volume fraction

of 3.4� 10�2. Boltzmann�s constant was kB ¼ 0:5, so the most probable molecular speed,
ffiffiffiffiffiffiffiffiffiffiffi
2kBT

p
, is unity at

the equilibrium reference state of T ¼ 1. The sound speed at the reference state is c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5kBT=3m

p
ffi 0:91.

Particles striking a thermal wall were reinjected into the system with a biased Maxwell–Boltzmann ve-
locity distribution based on the wall�s velocity and temperature. Specifically, particles striking the left wall

had their velocity components reset, choosing new values distributed as [9]
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P ðvxÞ ¼ m
kBTL

vxe�mvx
2
=2kBTL ;
P ðvyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2pkBTL

r
e�mðvy�uy

L
Þ2=2kBTL ;
P ðvzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2pkBTL

r
e�mvz

2
=2kBTL ;

and similarly for the right wall. The left and right walls had temperatures of TL and TR, respectively; their
velocities in the y-direction were uyL and uyR. These wall parameters were varied to impose a temperature

difference, DT ¼ TR � TL, or a shear velocity difference (i.e., Couette flow) Duy ¼ uyR � uyL, across the system.
The simulation itself used DSMC; see Bird [9] for an overview of this method. With one exception, the

simulations gathered statistics for each cell during each of S ¼ 5� 106 successive DSMC time steps of

duration 2.25� 10�2, following an initial system relaxation time of 5� 106 time steps; the one exception

extended S to 5� 107. Though the initial conditions were close to the steady state, we imposed the relax-

ation period of half the total simulation time to eliminate the potential for the decaying transients to persist

and corrupt the results. Estimating the viscous relaxation time as sv ¼ L2=kc gives sv � 25 at the reference

state; that is, sampling began after about 2000sv (approximately 108 collisions).

Fig. 1 shows the measured profile of the x-component of mean fluid velocity using SAM for various
temperature gradients and stationary walls. What is immediately striking about the velocity profile is that it
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Fig. 1. Sample averaged measurement (SAM) of mean fluid velocity, huxkis, for different temperature gradients. Note the apparent net

velocity, implying an anomalous flow from left to right. Plots are: DT ¼ 0 (equilibrium, circles), DT ¼ 2 (squares), and DT ¼ 4 (tri-

angles), all with S ¼ 5� 106 samples; DT ¼ 4 with S ¼ 5� 107 (crosses). Evidently, increasing S results in a smoother plot but does not

change the magnitude of the effect. The error bar is estimated as ru ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBhTki=mhNkiS

p
for cell k ¼ 5. Other simulation parameters

were NR ¼ 2000, Duy ¼ 0, and TL ¼ 1.
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Fig. 2. Sample averaged measurement (SAM) of mean fluid velocity, huxkis, for Couette flow with different shear velocity gradients.

Note the anomalous fluid flow from either side toward the center. Plots are: Duy ¼ 0 (equilibrium, circles), Duy ¼ 2 with uyL ¼ �1

(squares), and Duy ¼ 4 with uyL ¼ 0 (triangles). Other parameters were NR ¼ 2000, TL ¼ 1, DT ¼ 0, and S ¼ 5� 106 samples. See Fig. 1

caption for an explanation of the error bars.
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does not have a mean of zero when the temperature gradient is non-zero. This is in contradiction with the

expectation that the fluid is at rest in this closed system at steady state. Yet there is a systematic, positive

velocity from left to right, suggesting a fluid flow from the cold wall to the hot wall. When we exchanged the

temperatures of the walls, we again observed an apparent flow from cold to hot. Initializing the random
deviate generator with a different seed had no meaningful effect.

Fig. 2 shows the measurement of huxkis within a similar closed system, again using SAM, but this time for

Couette flow. The walls were at equal temperatures, but their motion imposed a large shear velocity to the

fluid. Now we see what appears to be a net fluid flow from left to right between x ¼ 0 to x ¼ L=2 and from

right to left between x ¼ L=2 to x ¼ L, that is, a flow from the center toward the walls. The apparent net

flow turns out to have a similar origin to the first system in that Couette flow creates a temperature gradient

within the system due to viscous heating (see Fig. 3), the maximum temperature being in the center of the

system. 1

The error bars on the largest gradient plots of Figs. 1 and 2 show that the effect is statistically significant.

These error bars were estimated using results from statistical mechanics [11]. Running the simulation longer

and taking more samples gave a smoother plot but did not affect the magnitude of the effect, as Fig. 1

shows.

Fig. 4 shows the results for CAM, the other definition for the mean fluid velocity, for the same systems as

in Figs. 1 and 2. In fact, the data for Fig. 4 were taken from the same simulation runs as their counterparts

in Figs. 1 and 2. We now have a very different result, with it being apparent that actually there is no net fluid

velocity; huxkic fluctuates about a mean of zero, as expected. Thus the simulation measurements from both
1 See Section 5 for a discussion on the measurement of temperature.
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Fig. 3. Temperature profiles for the simulations of Fig. 1 (temperature gradients) and Fig. 2 (Couette flow): equilibrium (circles);
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cases indicate that the CAM definition gives the correct result while the SAM definition contains a bias, as

evident from the anomalous flow in the closed systems at steady state.
4. Physical explanation for the bias

In examining the origin of the anomalous fluid velocity obtained using SAM, two considerations are key.

First, both Figs. 1 and 2 show measurements in systems far from equilibrium, where significant temperature

gradients are present (see Fig. 3), although the temperature gradient in the Couette system arises indirectly

from viscous heating. In the equilibrium plot of Fig. 1 (walls at equal temperature), the effect is entirely

absent. Second, with NR ¼ 2000 particles and K ¼ 20 cells, the mean number of simulation particles hNi in
any cell was between 75 and 160, depending on the temperature. With so few particles the thermodynamic

fluctuations are significant, the theoretical standard deviation of Nk being
ffiffiffiffiffiffiffiffiffi
hNki

p
, approximately 10% of the

mean [12]. Fig. 5 illustrates how increasing the total number of particles to NR ¼ 5000, without changing

any other physical parameters, decreased the measured SAM fluid velocity.

These clues indicate that non-equilibrium fluctuations may be causing the bias. Because a cell contains a

finite number of moving particles, there will be statistical fluctuations about the mean of any variable that

describes the macroscopic fluid behavior in a given cell. The fluctuation in the number of particles is

dNk � Nk � hNki, similarly dJk is the fluctuation of the total momentum in a cell; by definition these fluc-
tuations have zero mean (but non-zero variance). In the analysis below, we consider the variance, hðdNkÞ2i,
as well as
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hdJkdNki ¼
1

S

XS
j¼1

JkðtjÞNkðtjÞ
" #

� hJkihNki; ð3Þ

which is the covariance of momentum and particle number fluctuations in cell k.
Now we analyze the effect quantitatively. CAM measures mean particle velocity according to Eq. (1).

This is a straightforward measure of average fluid velocity in a cell and we will not elaborate on it further.

For SAM, which measures mean particle velocity at each sample and then averages these means over all

samples (see Eq. (2)), we start by writing it as hukis ¼ hJk=Mki ¼ hJk=mNki. Note that the instantaneous

total momentum, Jk, may be decomposed into a sum of the mean momentum hJki and a fluctuation dJk

about the mean; similarly, Nk ¼ hNki þ dNk. Dropping the subscripts because cell k is implied and using the

binomial expansion

huis ¼
hJi þ dJ

mðhNi þ dNÞ

� �
¼ hJi þ dJ

mhNi 1

"*
� dN
hNi þ

dN
hNi

� �2

þOðdN 3Þ
#+

¼ hJi
hMi �

hdJdNi
mhNi2

þ hJihðdNÞ2i
mhNi3

þOðdX 3Þ ¼ huic 1

 
þ hðdNÞ2i

hNi2

!
� hdJdNi

mhNi2
þOðdX 3Þ; ð4Þ

where OðdX 3Þ indicates terms of cubic order in the fluctuations. This gives us an alternative expression for

SAM that relates it to the CAM definition.

To relate the above to mode-coupling theory, it is useful to rewrite Eq. (4) in a slightly different form.

Since hJi ¼ mhNihuic, and thus dJ ¼ mhNiduþ mhuicdN , we can substitute this expression for dJ into the
hdJdNi term of Eq. (4) to obtain

huis ¼ huic �
hdudNi
hNi þOðdX 3Þ: ð5Þ

Note that the covariance term on the right hand side is zero at equilibrium and in the limit hNi ! 1 but

non-zero for finite, non-equilibrium systems [12]. The hdudNi correlation is of theoretical interest since it is

the origin of the asymmetric Brillouin peaks observed in light scattering for a fluid subjected to a tem-

perature gradient [7,13].

Returning to Eq. (4), we see that SAM differs from CAM by introducing the fluctuation covariance for

the cell, hdJdNi, and mean square fluctuation hðdNÞ2i. For our closed system at steady state, the average

total momentum hJx
k i is zero; thus huxkic ¼ 0 and Eq. (4) predicts

huxkis � �hdJx
k dNki

mhNki2
ð6Þ

to quadratic order in the fluctuations. To verify this analysis, we measured the covariance hdJx
k dNki (see Eq.

(3)) and average particle number, hNki, in the same simulations used for Figs. 1 and 2. Fig. 6 shows the

resulting prediction from Eq. (6) along with the corresponding SAM measurement of mean fluid velocity.

Agreement is excellent for both the temperature gradient and Couette flow scenarios.

Note that hukis / 1=hNki since the variance and covariance of extensive quantities such as hðdNkÞ2i,
hðdJkÞ2i, and hdJkdNki are proportional to hNki [12]. As mentioned in the discussion for Fig. 5, we ran two

similar simulations that differed only in the total number of particles. We expect that

huxkis
� �

2000

huxkis
� �

5000

¼ ðhNkiÞ5000
ðhNkiÞ2000

¼ 5

2
; ð7Þ

with the subscripts denoting the NR ¼ 2000 and NR ¼ 5000 simulations. Fig. 5 confirms this prediction.
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Earlier theoretical work [13] predicts that the non-equilibrium correlation of fluctuations, which pro-

duces a contribution due to the hduxkdNki term in Eq. (5), approximately goes as xðL� xÞDT . From this we

expect the huxkis profiles in Fig. 1 to be approximately quadratic in x, with a magnitude that is proportional

to the temperature gradient. Our results are consistent with these predictions.

Finally, in an equilibrium system, Eq. (5) predicts hukis ¼ hukic. We verified this in two simulations of an

equilibrium system having the same physical parameters as that used for Fig. 1, but with periodic

boundaries in all directions. In the first simulation the particles were initialized with a mean velocity of
ux0 ¼ 4:0 and in the second there was no initial mean flow (i.e., ux0 ¼ 0). In both cases the measured velocity

profiles gave huxkis ¼ huxkic ¼ ux0 to within statistical error.
5. Concluding remarks

The purpose of this paper is to demonstrate that the SAM of mean fluid velocity, as defined by Eq. (2),

can have a bias due to the correlation of fluctuations in systems far from equilibrium. Not only is this bias
observable as an anomalous flow in simulations of closed systems, it is accurately predicted by Eq. (6) as

Fig. 6 confirms. On the other hand, the CAM, as defined by Eq. (1), is an unbiased definition of mean fluid

velocity.

We can generalize the definitions of SAM and CAM to an abstract hydrodynamic variable, HðM ; J;EÞ:
hHis � hHðM ;J;EÞi and hHic � HðhMi; hJi; hEiÞ, where M ; J and E are mass, momentum, and energy,

respectively. For example, from the equipartition theorem [12], the translational temperature may defined

as,
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T ðM ; J;EÞ ¼ 2m
3kBM

E

 
� jJj2

2M

!
: ð8Þ

It is well known that the CAM definition of mean temperature is unbiased while the SAM definition is

biased due to the variance of equilibrium fluctuations, specifically hjJj2i 6¼ jhJij2. In this paper we show that

a similar bias for fluid velocity exists due to non-equilibrium fluctuations.

Average temperature is sometimes computed as

hT i ¼ m
3kB

hu2i
�

� jhuij2
	
: ð9Þ

While this definition is unbiased at equilibrium, it has a small bias from the correlation of non-equilibrium

fluctuations. However, the temperature profiles shown in Fig. 3 are virtually identical whether one uses hT ic
from Eq. (8) or hT i from Eq. (9) since the bias is small relative to the gradients. We expect the magnitude of

the temperature bias in Eq. (9) to be proportional to jhuis � huicj
2
, which at T ¼ 2 is of order 10�7, much

less than the plot line widths for the cases presented. While it would be of interest to analyze this bias in
temperature in more detail, the focus of this paper is the bias of velocity measurements.

Even for systems far from equilibrium, the magnitude of non-equilibrium fluctuations is quite small

relative to equilibrium fluctuations. For example, in Fig. 1 for the moderate gradient case the temperature

from left wall to right wall increases by a factor of three over a distance of only ten mean free paths. Even

with this strong gradient, the anomalous fluid velocity from the SAM definition is small (Mach number of

approximately 10�4) and is noticeable above the statistical noise only when the number of samples in our

simulations exceeds 104. For these reasons, the bias is not significant in many molecular simulations of fluid

flows and thus, to our knowledge, has not been investigated.
While the bias, in most cases, is very small, for some problems it can be quite important. For example, in

simulations of Brownian motors and related micro-mechanical systems the magnitude of fluctuations is

large and the systems are very far from equilibrium. If the purpose of a simulation is to determine whether a

Brownian motor will move or a nanoscale pump will create a flow, it is essential to correctly measure the

fluid velocity. Other examples include simulations of rarefied gas flows, such as vapor deposition in near-

vacuum conditions, aerospace flows in the upper atmosphere and astrophysical flows [14]; or flows with

sharp interfaces, such as strong shock waves. Finally, computer simulation programs are usually tested on

simple benchmark problems for which the flow properties are known; the temperature gradient and Couette
flow scenarios considered in Section 3 are two common benchmarks. The anomalous flow measured by the

SAM definition could be mistaken as indicating an error in the programming logic.

We want to emphasize that the correlation of non-equilibrium fluctuations that produces the bias is a

general, physical phenomenon, and consequently the bias in SAM is not an artifact of a particular method

of molecular simulation. Although we demonstrate the effect in simulations of a dilute gas using the DSMC

method, similar correlations of non-equilibrium fluctuations are observed in other particle-based simula-

tions, such as molecular dynamics [15] and lattice gases [16]. Furthermore, while DSMC is a stochastic

algorithm, the hydrodynamic fluctuations in DSMC simulations have nothing to do with the Monte Carlo
elements of the method, which involve the random selection of collisions among particles.

A technical point peculiar to DSMC simulations is relevant in light of the inversely proportional rela-

tionship between the particle number and the magnitude of the SAM bias, as illustrated in Fig. 5. By re-

scaling, each DSMC particle may represent a large number of molecules in the physical system being

modelled. The variance of fluctuations for extensive variables is proportional to the number of simulation

particles, so this variance in a DSMC simulation differs from that in the physical system by the ratio of

physical molecules per simulation particle. When this ratio is large, the effect of fluctuations in the DSMC

simulation exceeds that of the physical system, typically by many orders of magnitude. When the ratio is
one-to-one, as in the simulations we present here, then the fluctuations in the simulation have the same
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magnitude as those in the physical system. For DSMC simulations, then, the bias in SAM depends on the

number of simulation particles and not the number of physical particles they represent.

Although the CAM definition gives an unbiased measurement of mean fluid velocity there are situations
in which the SAM definition is useful. For example, for transient flows, unless an ensemble of systems is

considered, the measured fluid velocity will necessarily be the instantaneous velocity. Another example is in

particle/continuum hybrids [17,18], where the coupling of the two algorithms requires the estimation of

instantaneous hydrodynamic quantities. As we show in this paper, the average of instantaneous fluid ve-

locity is biased; in many applications this small error is acceptable, but researchers should be aware of its

existence.

To keep the presentation uncluttered and conceptually clear, in this paper we only consider a single

species fluid, that is, all particles having the same mass. The measurement bias in SAM will likely be more
pronounced in multi-species fluids, especially when there is a large disparity in the number densities and

molecular masses of the species. We will provide a more general treatment in future work. Furthermore, in

this paper we only consider closed systems, while in molecular simulations of fluid flow, open systems

(‘‘computational wind tunnels’’) are common. Typically, simulations of such open systems use particle

reservoirs at the system boundaries. The details of how these reservoirs are simulated can affect the cor-

relation of fluctuations in non-equilibrium systems, an effect we also plan to present in a future study.
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