# Fluctuating Hydrodynamics of Flow through Porous Membranes

Alejandro Garcia (San Jose State University)

Daniel Ladiges (Berkeley Lab)

Andy Nonaka (Berkeley Lab)

John Bell (Berkeley Lab)



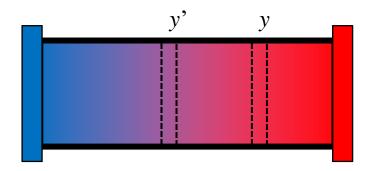


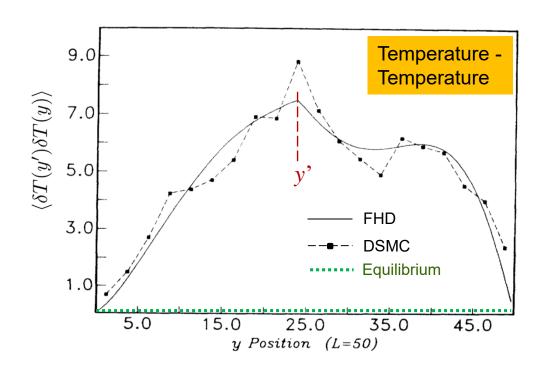


## Non-equilibrium Fluctuations

Hydrodynamic fluctuations are long-ranged in a fluid held at a non-equilibrium steady state.

$$\langle \delta \rho(y') \delta v(y) \rangle \propto \nabla T$$
  
 $\langle \delta T(y') \delta T(y) \rangle \propto (\nabla T)^2$ 





M. Malek Mansour, ALG, G. Lie and E. Clementi, Phys. Rev. Lett. 58 874 (1987).

## Fluctuating Hydrodynamics (FHD)

Landau and Lifshitz introduced stochastic flux terms into the equations of hydrodynamics to model spontaneous fluctuations in fluids.

$$\frac{\partial}{\partial t} \left( \rho \mathbf{u} \right) = -\nabla \cdot \left( \rho \mathbf{u} \right),$$
 
$$\frac{\partial}{\partial t} \left( \rho \mathbf{u} \right) = -\nabla \cdot \left( \rho \mathbf{u} \otimes \mathbf{u} \right) - \nabla P - \nabla \cdot \left[ \mathbf{\Pi} + \widetilde{\mathbf{\Pi}} \right],$$
 [Stress tensor] 
$$\frac{\partial}{\partial t} \left( \rho E \right) = -\nabla \cdot \left( \rho \mathbf{u} E + P \mathbf{u} \right) - \nabla \cdot \left[ \mathbf{Q} + \widetilde{\mathbf{Q}} \right] - \nabla \cdot \left( \left[ \mathbf{\Pi} + \widetilde{\mathbf{\Pi}} \right] \cdot \mathbf{u} \right).$$
 [Heat flux]

## Dissipative Fluxes in FHD

The deterministic stress tensor and heat flux take their standard linear forms (Stokes and Fourier laws),

$$\Pi_{ij} = -\eta \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \delta_{ij} \left( \frac{2}{3} \eta \nabla \cdot \mathbf{u} \right), \quad \text{and} \quad \mathbf{Q} = -\kappa \nabla T$$

Stochastic stress tensor and heat flux are independent noises, white in space and time, with zero mean and variances,

$$\langle \widetilde{\Pi}_{ij}(\mathbf{r},t)\widetilde{\Pi}_{kl}(\mathbf{r}',t')\rangle = 2k_B\eta T \left[ (\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) - \frac{1}{3}\delta_{ij}\delta_{kl} \right] \delta(t-t')\delta(\mathbf{r} - \mathbf{r}'),$$

$$\langle \widetilde{Q}_i(\mathbf{r},t)\widetilde{Q}_j(\mathbf{r}',t')\rangle = 2k_B\kappa T^2\delta_{ij}\delta(t-t')\delta(\mathbf{r} - \mathbf{r}').$$

### Finite Volume SPDE solver

Write the FHD equations as: 
$$\frac{\partial}{\partial t}\mathbf{U} = -\nabla\cdot\mathbf{F} - \nabla\cdot\mathbf{D} - \nabla\cdot\tilde{\mathbf{S}}$$

Time integration: 
$$\frac{\partial}{\partial t}\mathbf{U} = \frac{\partial}{\partial t}(\ \rho,\ \rho\mathbf{u},\ \rho E\ )$$

• Three-stage Runge-Kutta

Hyperbolic: 
$$\mathbf{F} = (\rho \mathbf{u}, \rho \mathbf{u} \mathbf{u} + P \mathbf{I}, \rho \mathbf{u} E + \mathbf{u} P)$$

Four point centered

Parabolic: 
$$\mathbf{D} = (0, \mathbf{\Pi}, \mathbf{Q} + \mathbf{u} \cdot \mathbf{\Pi})$$

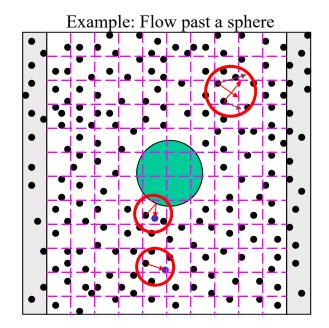
Two point centered

Stochastic: 
$$\tilde{\mathbf{S}} = (0, \tilde{\mathbf{\Pi}}, \tilde{\mathbf{Q}} + \mathbf{u} \cdot \tilde{\mathbf{\Pi}})$$

· Weighted 2 point centered

## Direct Simulation Monte Carlo (DSMC)

- Initialize system with particles
- Loop over time steps
  - Create particles at open boundaries
  - Move all the particles
  - Process any interactions of particle & boundaries
  - Sort particles into cells
  - Sample statistical values
  - Select and execute random collisions

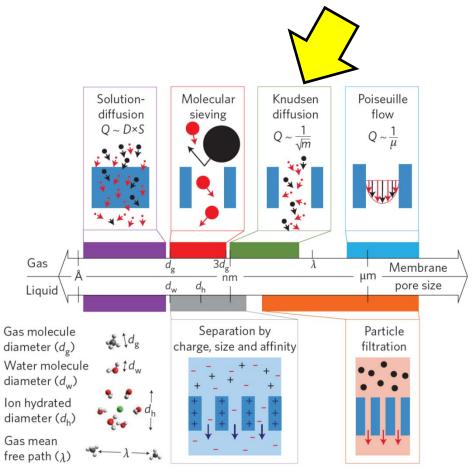


G.A. Bird, *Molecular Gas Dynamics and Direct Simulation of Gas Flows*, Clarendon, Oxford (1994) F. Alexander and ALG, *Computers in Physics*, **11** 588 (1997)

#### **Porous Membranes**

Effusion (Knudsen diffusion) is gas transport through a membrane with pore sizes roughly between the mean free path and the molecule diameter.

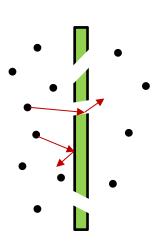
For standard conditions this range in pore size is between 100 nm to 2 nm.

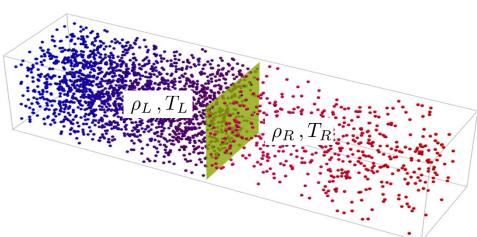


L. Wang, et al., Nature Nanotechnology 12 509-522 (2017)

## Transport by Effusion

Molecules reaching the interface cross it with probability f.





The mean fluxes of mass and energy are,

$$\langle J_M \rangle = \frac{fA k_B^{1/2}}{\sqrt{2\pi m}} \left( \rho_L T_L^{1/2} - \rho_R T_R^{1/2} \right), \qquad \langle J_{\mathcal{E}} \rangle = \frac{2fA k_B^{3/2}}{m\sqrt{2\pi m}} \left( \rho_L T_L^{3/2} - \rho_R T_R^{3/2} \right).$$

## Langevin Model for Effusion Membrane

In FHD we model the mass and energy crossing the membrane with the Langevin equations,

$$\frac{d}{dt}M = \langle J_M \rangle + \widetilde{J}_M, \qquad \qquad \frac{d}{dt}\mathcal{E} = \langle J_{\mathcal{E}} \rangle + \widetilde{J}_{\mathcal{E}},$$

where the white noises have variances and covariances,

$$\langle \widetilde{J}_M(t)\widetilde{J}_M(t')\rangle = \frac{mfA k_B^{1/2}}{\sqrt{2\pi m}} \left(\rho_R T_R^{1/2} + \rho_L T_L^{1/2}\right) \delta(t - t')$$

$$\langle \widetilde{J}_{\mathcal{E}}(t)\widetilde{J}_{\mathcal{E}}(t')\rangle = \frac{6fA k_B^{5/2}}{m\sqrt{2\pi m}} \left(\rho_R T_R^{5/2} + \rho_L T_L^{5/2}\right) \delta(t - t'),$$

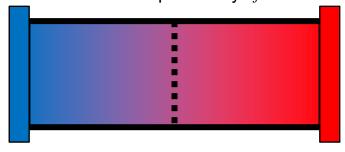
$$\langle \widetilde{J}_{\mathcal{E}}(t)\widetilde{J}_{M}(t') \rangle = \frac{2fA\,k_{B}^{3/2}}{\sqrt{2\pi m}} \left( \rho_{R}T_{R}^{3/2} + \rho_{L}T_{L}^{3/2} \right) \delta(t-t').$$
 Note: Mass and energy noises are correlated

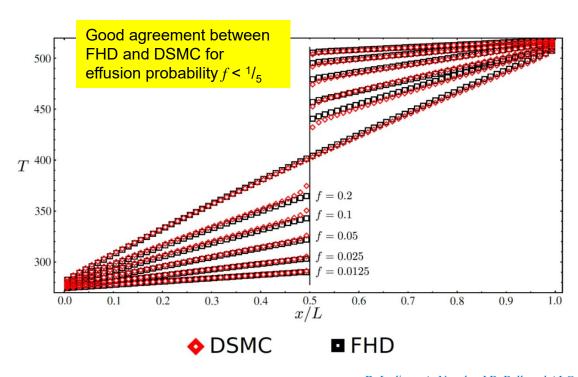


## Temperature Profiles

Simulated a dilute gas with a temperature gradient in a system bisected by a porous effusion membrane.

Porous Membrane Effusion probability: *f* 



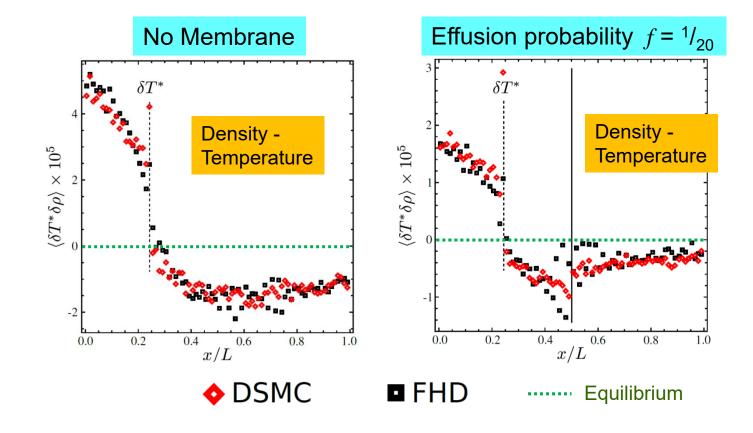


D. Ladiges, A. Nonaka, J.B. Bell, and ALG, *Physics of Fluids* **31**, 052002 (2019)

### **Correlations of Fluctuations**

Temperature gradient is reduced by ~3 and so is density-temperature correlation

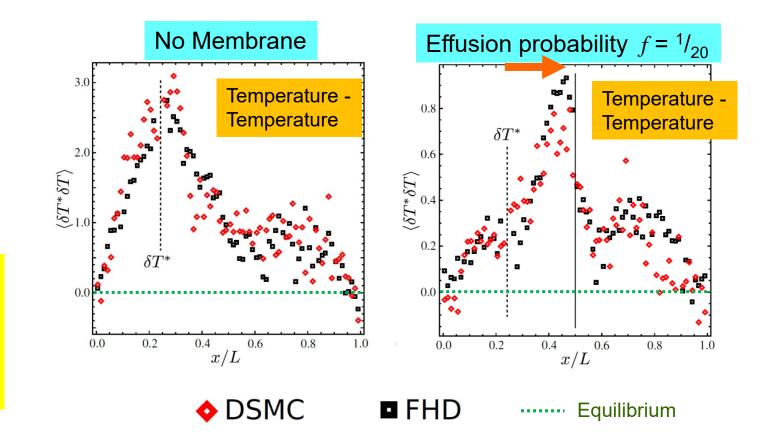
Correlation persists across the membrane



### **Correlations of Fluctuations**

Temperaturetemperature correlation is reduced but persists across the membrane

Correlation
peak is
significantly
shifted towards
the membrane



## Master Equation Interface Model

Also tested a Master equation formulation using the Gillespie (SSA) algorithm in FHD.

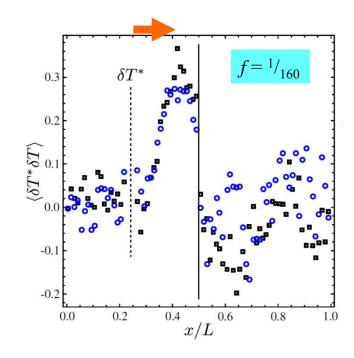
$$\tau_{\rm e} = \frac{m}{\rho f A} \sqrt{\frac{2\pi m}{k_B T}}$$

Mean waiting time for crossings

$$P_{\epsilon}(\epsilon) = \frac{\epsilon}{k_B^2 T^2} e^{-\epsilon/(k_B T)}$$

Distribution of molecule energies

The Langevin and Master equation models produced equivalent results.



Langevin equation

■ Master equation

## Stochastic Heat Equation

To investigate the shift in the peak we consider the linearized stochastic heat equation,

$$\rho c_v \frac{\partial}{\partial t} \delta T(y,t) = \frac{\partial}{\partial y} \kappa(y) \frac{\partial}{\partial y} \delta T - \frac{\partial}{\partial y} \widetilde{Q} \qquad \text{ with } \qquad \frac{\langle \widetilde{Q}(y,t) \widetilde{Q}(y',t') \rangle =}{2k_B \, \kappa(y) T_0(y)^2 \, \, \delta(t-t') \delta(y-y').}$$

Discretizing in space,  $\mathbf{U} = [\delta T_1, \dots, \delta T_N]$ 

$$\frac{\partial}{\partial t}\mathbf{U} = -\mathbf{A}\mathbf{U} + \mathbf{B}\boldsymbol{\xi}$$

$$\overset{\text{Cold}}{\mathsf{Wall}}$$

$$\overset{\text{Membrane}}{\mathsf{Eluid}}$$

$$\overset{\text{Membrane}}{\mathsf{Eluid}}$$

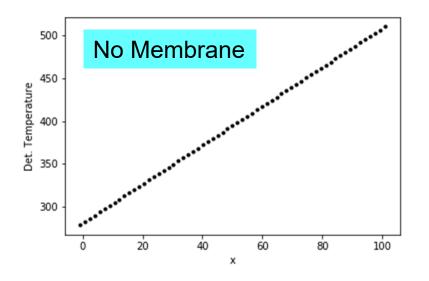
For this Ornstein-Uhlenbeck process we find the covariance  $\sigma_{i,j}=\langle \delta T_i \delta T_j \rangle$  by solving

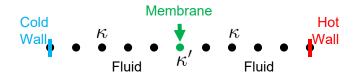
$$A\sigma + \sigma A^{T} = BB^{T}$$

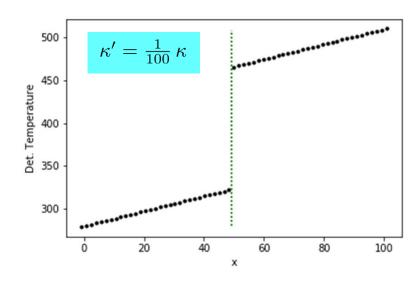
using linear algebra (e.g., by numerical relaxation)

## Temperature Profile

Deterministic temperature profiles are qualitatively similar to FHD and DSMC results

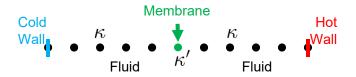




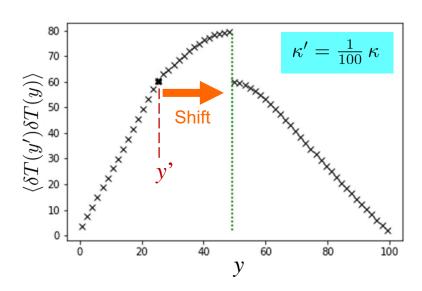


### **Correlations of Fluctuations**

Temperature-temperature correlation is qualitatively similar to the FHD and DSMC result.







## Summary & Future Work

#### **Summary**:

- Long range correlations persist through an effusive interface.
- Reduced magnitude largely due to change in  $\nabla T$ .
- Distortion predicted by the stochastic heat equation.
- FHD can simulate gas transpiration; faster than DSMC.

#### Future work:

- Shear gradient; Concentration gradient
- Correlations parallel to the membrane
- Molecular sieving
- Ion transport in electrolytes
- Active transport (transport & chemistry)



# Thank you for your attention

For more information, visit: ccse.lbl.gov www.algarcia.org

Thank you Aleks Donev for organizing this session