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Hydrodynamic Fluctuations

The study of hydrodynamic fluctuations is a
seminal topic of statistical mechanics

The topic is of increasing importance
given the advances in nanoscale fluid
technology, including applications in

cellular biology.

Yet only recently have hydrodynamic
fluctuations been incorporated into

computational fluid dynamics.
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Origins of Fluctuating Hydrodynamics

In 1957, Landau and Lifshitz formulated the basic equations of fluctuating hydrodynamics
in this 2-page paper. A slightly expanded form appears in their textbook.

Soviet Physics JETP 5, Part 3, 512 (1957)
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Hydrodynamic fluctuations

L. D. LANDAU AND E. M. LIFSHITZ

Translated by R. T. Beyer

A general theory of hydrodynamic fluctuations can be constructed by in-

troducing ‘outside’ terms into the equation of motion of the liquid, as was donl:

by Rytov [1] for the fluctuations of an gnetic field in cc

media; he introduced corresponding ‘outside’ fields in Maxwell's equations.
The introduction of such additional terms can be accomplished in different

equivalent ways. The most advantageous is the form in which the fluctuations

of the ‘outside quantities’ at the vanous points of the liquid are not correlated

with one another. This is by the intr ion of ‘outside stress
tensor’ s, in the Navier—Stokes equation and the *outside heat flow” vector g
in the heat ductis ion (the ion of continuity remains un-
changed). The system of hydrodynamic equations then takes the form
P 4 divipv = 0. [t
ot
av 9 , doi
- - 7 2
T PRl @
1 v, A, "
pT( + vvs) - E";*<a_x: + o—; — divg, 3)
v, dv, 2 én
= e L — 3 @)
i "(vxl o 3%y )t ( a,,‘ + S )
q=—xkVT+g (&)

(all the notation agrees with that used in our book [2]). To these equations
should be added the relations which define the mean values of the products of
components s, and g;. We do this by first assuming the fluctuations to be

Reprinied with permision from Sovie Physics JETP 8, Part 3,512, 1957.
@ 1957 American Institute of Physics
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classical (i.e. their frequencies w < kT/h), while the viscosity and the thermal
conductivity of the liquid are non-dispersive.

The rate of change of the total entropy of the liquid § is given by the
expression (see ref. 2, §49).

s [fou(on  ou) _qvT
2= J‘{lT(ux,‘ ﬁx,) T }dV ©

Following the general rules of fluctuation theory laid down in ref. 3, §§ 117,
120, we select as the values %, figuring in this theory the components of the
tensor o, and the vector g*. It is then evident from eq. (6) that the role of the
corresponding quantities X, will be played by

1 a
47!:‘ v, AV and 1 ar AV,
TaT\Ex, ax .

while egs (4) and (5) play the role of the relations %, = — v, X, + ¥, (see ref 3,
§120), where the s;, and g; correspond to the quantities y,. The coefficients yy,
in these relations determine directly the mean values

PalE (03] = klvas + %0030 — 12).
The final formulas have the form:
SalT, 0)50m(Es, 13) = 2kT [1(88im + Simbp)
+(— 2n/3)0ubim]10(rs — r,)8(; — 1),
iy, 1)gu(F2, t2) = 2kT K8, 5(rs — 1,801 — £,),

@lrs 1)8in(20 12) = 0. Y

If use is made of the spectral p of the
which are defined by
x= o [ xweod ¥ XoX, dw da
=50 s X f

then the factor 3(t; — ¢,) in oqs (7) is replaced by 8(w + w')/2n.

These results are generalised without difficulty to the case of the presence
of dispersion in the coefficients of viscosity or thermal conductivity and the
quantum nature of the fluctuations with the aid of the general theory of
Callen and others, in the form set forth in ref. 4. There appears only the factor

! An incssential differenc, connested with the fact that we arc dealing here with a continuous
(values at each point of the li a discrete set of which the
formulas in ref. 3 were deve]opeu can easu, be removed formally by dividing the volume of the
liquid into small but finite regions AV and carrying out the transition AV —0 in the final
equations.
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(hew/2kT) cothhw/2kT in the expressions for the average values of the
products of the spectral components s; and g;, while the quantities , {, x are
to be replaced by their real parts.
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Central Idea of Fluctuating Hydrodynamics

From Landau & Lifshitz, Statistical Physics, Part 2

The equations of hydrodynamics...with no specific form of the stress tensor
and the heat flux vector simply express the conservation of mass, momentum,
and energy. In this form they are therefore valid for any motion, including
fluctuational changes...

The usual expressions for the stress tensor and the heat flux relate them
respectively to the velocity gradients and the temperature gradient.

When there are fluctuations in a fluid, there are also spontaneous local
stresses and heat fluxes unconnected with these gradients; we denote these
(as) “random quantities”...



Stochastic Heat Equation

For simple conduction we write the change in energy density, €, in terms of heat flux, Q, as

0 —
as =-=V-Q where Q=0+0Q (Total) = (deterministic) + (stochastic)

Write the deterministic heat flux in Onsager form as

Q=1LX (Flux) = (Onsager coefficient) * (Thermodynamic “Force”)

From non-equilibrium thermodynamics the rate of entropy change in a volume ( is

g — E + E — J X-Q+ [2] (internal dS/dt) + (external dS/dt)
dt dt dt Q T 139
After a few manipulations we find the thermodynamic force
X—vl— 1VT and thus Q= LVT
- T T2 Q="7



Stochastic Heat Equation (cont.)

Comparing Q = LX with Fourier law
6 = —AVT tells us that the Onsager coefficient is L =AT?
Total heat flux has the form required for linear response theory
Q=Q+Q=2T*’X+Q
so by the fluctuation-dissipation theorem the white noise has correlation

(Q(r,)Q(r',t")) = 2kg AT? 8(t — t") 8(r — 1)

Collecting the above and writing € = pcyT gives the stochastic heat equation,

oT _ _
pcva = AV2T + V.. /2AkgT? Z where Z is Gaussian white noise
(Zr,Z(r',t)) =8t —t)8(r—1")



Stochastic Species Diffusion Equation

We can derive a similar stochastic diffusion equation for mass diffusion in ideal solutions

d,n=V-(DVn++v2DnZ) Dean-Kawasaki equation

where n is the number density and D is the diffusion coefficient.

Notice the similarity with the stochastic heat equation

0, T=V-(kVT +aTZ) where Kk = A/pcy a = ./2kgA/pcy

The deterministic forms of these two diffusion equations give equivalent solutions
however the stochastic noises differ so the stochastic solutions differ.
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Numerics for Stochastic Heat Equation

Write the 1D Stochastic Heat Equation as

0,T=x0:T+a0,TZ

Discretize time and space using centered spatial derivatives

(A v 2 T — 2T + T,
[ S ol
0.T - v O T Ax? Time (t)
with the stochastic term being n+1 O ) @,
n
aa Tz_) Tir-lk1/2_7:i711/2 | Ti |

X Ax n . ‘ . ‘ .

where i—1 L .

Fiviyz = aTi1228%1,2 Space (x)



Numerical Schemes

Forward Euler scheme for 0,T =« 02T + a0, T Z

KAt
Tin+1 = Tl.n + A—xz( irj-l ZTn + Tln 1) + ( i+1/2 l+1/2 Tiril/ZZin—l/Z)

Predictor-Corrector scheme has two steps

. KAt _
Ty =T+ Ax2 (T = 2T/ + TiZy) + ( i+1/22141/2 Tiri1/zzin—1/2) Predictor step

Tt = [Tn+T + s (Tz+1 2T +Ti_ 1)+ ( iv1/2Z841/2 — Tic1/2Zi- 1/2)] Corrector step

There are other explicit schemes (e.g., Runge-Kutta) and implicit schemes (e.g., Crank-Nicolson)



Discretized White Noise

The white noise is discretized as « >

Space (x)
. nt+l1 —e e O
YA WA ——— NI
i+1/2 = \/W i+1/2 ‘ i ‘
where N is a normal (Gaussian) distributed random number. n n Time (t)
i—1/2 i+1/2

This definition for the discrete noise has a correlation

1 6n,nl 5i,il
<Z1+1/2Zu+1/2> At Av<Nl+1/2 Nu+1/2>_ T AV

which is the discretized form of

(ZrOZ@,t)) =8t —t') 8(r—7")



Python Notebook StochasticHeat

https://github.com/AlejGarcia/IntroFHD

Demonstration program, StochasticHeat, can be
downloaded from GitHub.

Written in Python, it computes the Stochastic Heat
Equation for temperature fluctuations in an iron rod.

() 44000 atoms )

<

) 10 nm

»
»

Program options:

* Periodic or Dirichlet boundary conditions
. For\{v.aro.l Euler or Predlcjcc-)r-FZorrector sche.njes QR code for GitHub download
e Equilibrium or Non-equilibrium (VT) conditions

Runs take only a few minutes on a laptop



Variance of Temperature Fluctuations

From statistical mechanics, the equilibrium
variance of temperature fluctuations is

Variance < dT+2 >
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Spatial Correlation of Fluctuations

From statistical mechanics, the equilibrium

<5Ti5Tj> = <5Ti2> 8; 2 million steps
correlation of temperature fluctuations is ’ N =32 cells
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Static Structure Factor

From statistical mechanics, the equilibrium
fluctuation power spectrum (structure factor) is

Structure factor S(k)
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Doney, et al., CAMCOS 5 149 (2010)
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Non-equilibrium Correlation

For a non-equilibrium system
with a temperature gradient VT

Correlation < dT(x) dT(x*) >
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Multi-species Compressible FHD

Full multi-species compressible fluctuating hydrodynamic (FHD) equations are

o Sp_eciesflux
Mass (species k) 5% (pr) ==V (pgv) — V- [Fj + Fy|
5 Stre_ss t(insor
Momentum a(PV) ==V -[pv@QVv+pl]-V- [H + H] + pg
0 HEat fEJx L
Energy a(PE) =-V-[v(pE+p)] —=V-[Q+Q|-V- [[H+H] ‘V] +pg-v

Summing the mass equation over species gives the continuity equation

For incompressible fluids make pressure
a Lagrange multiplier that enforces the
incompressiblity constraint.

Doney, et al. Phys, Fluids, 27(3), 2015

Mass (total) %(p) ==V (pv)



Dissipative Fluxes — Stress Tensor

Deterministic stress tensor components
_ ov; 0v; 2 1 — shear viscosity
M = - (a_x] + a_xl> — &y ((C N §T]> v V) ¢ — bulk viscosity

Stochastic stress tensor
P. Espaiol, Physica A 248 77 (1998)

_ _ ’k T J2kgnT _ _ 1
fi(r,t) = ZkBTnZ+< B§ - 33“ )Tr(z)l where z=ﬁ(z+zf)

and Z is an uncorrelated Gaussian tensor field with zero mean and unit variance.




Dissipative Fluxes — Species Flux

Deterministic species flux o oot
F = p Diag(Y) D [ VX + &-1) vp + Lyr X —mole fraction Giovangigli (1999)
p T Y —mass fraction
Soret

Stochastic species flux Balakrishnan, et al., Phys. Rev. E 89 013017 (2014)

~ m

F=BZ where BBT =2kgL  and L= Fl)c_ Diag(Y) D Diag(Y)

B

The matrix B is computed from the Cholesky factorization of L (i.e., “matrix square root”).

0
Note: Single species FHD is much simpler since continuity equation has no noise term. 6_p = -V (pv)
t



Dissipative Fluxes — Heat Flux

Deterministic heat flux

M — molecular mass matrix

n_ _ T N -1, pT\F
Q = —AVT + (kgTx' Diag(M)~*+ h")F h — enthalpy density

Dufour

Stochastic heat flux

Q = \/2kgT21 Z + (kgTx" Diag(M)~1+ hT)F

~

Note: Single species FHD is much simpler since F = F = 0.



Staggered Grid Formulation

Numerical algorithm described in Srivastava, et al., Phys. Rev. E 107 015305 (2023)

=) v () G
(@) [Yijkt+r/2 i.j+1/2k (b) AN
Cell centered - 1] [ 2 ¥
. - P
Density, Energy, Temperature 0 cg,y/\,\ Q
: y =
Face centered — { - -#
: . ?e LS s i &
Velocity, Species and Heat fluxes ‘\ 7 o-|-o¥.Q), fgee ]
Edge & cell centered — = 0ok
(2) ! \ Zz{j;!cq—)l/Q 522 &
Stress tensor iy Puik Tk ” by
jfi}uz,g.k Pi.jik Y"’j""

Temporal integration uses an explicit, three-stage, stochastic Runge-Kutta (RK3) scheme.

Superior to our previous implementations in Balakrishnan, et al., Phys. Rev. E 89 013017 (2014);
Bell et al., Phys. Rev. E 76 016708 (2007); and Garcia et al., J. Stat. Phys. 47 209 (1987).



Srivastava, et al., Phys. Rev. E 107 015305 (2023)

Ne/Kr Mixture in VT

Cold
273K

Spatial correlations of fluctuations for a
neon/krypton mixture in a temperature gradient.

(upper) Temperature — temperature correlation
(lower) Velocity — density correlation

FHD and particle simulations (DSMC) are in
excellent agreement; delta correlations when VT =0
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Ne/Kr Mixture in VT

Spatial correlations of fluctuations for a
neon/krypton mixture in a temperature gradient.

(upper) Temperature — temperature correlation
(lower) Velocity — density correlation

FHD and particle simulations (DSMC) are in

excellent agreement; delta correlations when VT =0
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Giant Fluctuation Phenomenon

Vailati, et al., Nature Comm., 2:290 (2011).
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Top-down view of
2% density fluctuations
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Experiments show macroscopic fluctuations for interface mixing.
Phenomenon due to correlation of concentration-velocity fluctuations.



Giant Fluctuation
Simulations

Molecular dynamics
simulations of this “giant
fluctuation” phenomenon
indistinguishable from
those using fluctuating
hydrodynamics.

Fluctuating
Hydrodynamics

Initial
State

Deterministic
Hydrodynamics

Doney, et al., CAMCOS, 9-1:47-105 (2014)

Molecular
Dynamics



Simulation Results

Excellent quantitative
agreement between
molecular dynamics and
FHD for the form and
growth rate of the rough
mixing interface.

Interface Spectrum

100

10

0.

0.01

Doney, et al.,, CAMCOS, 9-1:47-105 (2014)
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FHD & Instabilities

Time=0

Density
-1.061

1.058

' 1.055
I 1.052
1.049

Stochastic Hydrodynamics

Time=0

Density
-1.061

1.068

l 1.055

1.052

1.049

Doney, et al., Physics of Fluids, 27(3):037103 (2015)

Deterministic Hydrodynamics



Mixed-mode Instability

The non-equilibrium
fluctuation signal is
trampled by the
large amplitude of
the hydrodynamic
instability

Spectrum S(k)

10

Doney, et al., Physics of Fluids, 27(3):037103 (2015)
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FHD & Turbulence (olmogorov

wavenumber
|
|
Inertial Near Dissipation : Far Dis.
Thermal fluctuations dominate turbulent — Y A ; k \
fluctuations in the near-dissipation range, e S R I R S S
that is, for length scales larger than the 10° & S— i A
f— ClCI'n'IH.'llSth 1
KOImOgorOV Iength' 105 = e %:::c;?;ﬁ]ucmmions E 5
a0 10 10 & _ _:“ 5
This theoretical prediction by Greg Eyink Deterministic \|
. . . 3 15 L -
was confirmed by our FHD simulations of - " :
homogeneous, isotropic, incompressible g ool i
1
turbulence. sk !
!
1
103()! 1 1 Ll L , 1 |
10° 10! 10°

k(cm™)

Also verified in DSMC particle simulations
Bell, et al., J. Fluid Mech. 939 A12 (2022)



FHD & Chemistry

Chemical reactions can be incorporated
into FHD by adding source terms to the
species equation.

d _ — _ __
E(Pk) ==V (ppv) =V [Fp+ F| + Q. + 0

From the chemical Langevin equation

reactions

Q = Z Vier ax({pi})

r

reactions

Q\I/c = Z Vir V ak({pi}) Zy

Kim, et al., J. Chem. Phys., 146, 124110 (2017)

Stochastic (FHD)

Deterministic

Vir - Stochiometric coefficients

ar({pi}) - Propensity (rate) function



FHD & Electrolytes

By replacing chemical potential with electrochemical potential
we can model charged species, such as ions in electrolyte solutions

Fresher Water | k;g X <6pNa(kx)6pNa(kx)*>
50 | | 500000 gRIRRRT
Simulation results give the e ol
expected “giant fluctuations” o4 14 200 r D',,./\ Neutral |
. . . =04 —1.4nm iy
spectrum, which is slightly i 150 /. Charged -
different for charged species. 200 100 | analytic .
i ¥ data
50 analytic, no charge i
" J 1 data, no chargel O
Peraud, et al., Phys. Rev. F, 1(7):074103 (2016) . Saltior Water o= : 0 1x1 07 2x1 07 3x1 07 Ax1 07

_______________________________

K, [em™]



FHD & Multi-phase fluids

Can us diffuse interface models
(e.g., Cahn-Hillard) in FHD to study
multi-fluid interfaces.

We have simulated the Rayleigh-
Plateau instability for liquid
cylinders pinching into droplets.

Currently investigating droplets on
solid surfaces with contact angle
boundary conditions.

Breakup of a liquid torus into droplets

Barker, et al., Proc. Nat. Acad. Sci., 120 2306088120 (2023)



Summary & Remarks nttps://github.com/AMREX-FHD/

Here are some closing thoughts:

* Thermal fluctuations can produce interesting meso- and
macroscopic phenomena (e.g., giant fluctuation effect).

* Fluctuating hydrodynamics is a powerful methodology for
the study of these phenomena.

* There are accurate and efficient numerical methods for the
fluctuating hydrodynamic equations.

* Simple FHD models, such as the stochastic heat equation,
are suitable for university-level students.

 Many opportunities exist for applying FHD to problems that
are of interest to mathematicians, scientists, and engineers.

* Finally...



In Memoriam

Jose Maria Ortiz de Zarate Aleksandar Donev
1964 - 2020 1980 - 2023



https://github.com/AlejGarcia/IntroFHD

Thank you for your
attention and participation

Questions?

QR code for GitHub download

Vorticity in compressible turbulence simulations
(left) Deterministic | (right) Stochastic






