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Hydrodynamic Fluctuations

Blue sky due to 
Rayleigh scattering 
from density 
fluctuations in air

Rayleigh-Brillouin scattering spectrum 
(dots: Particle simulation; lines: Theory)

Bruno, et al., Chem. Phys. Lett. 422 517 (2006)

The study of hydrodynamic fluctuations is a 
seminal topic of statistical mechanics

Brownian motion

The topic is of increasing importance 
given the advances in nanoscale fluid 
technology, including applications in 
cellular biology.

Yet only recently have hydrodynamic 
fluctuations been incorporated into 
computational fluid dynamics.



Origins of Fluctuating Hydrodynamics
In 1957, Landau and Lifshitz formulated the basic equations of fluctuating hydrodynamics 
in this 2-page paper. A slightly expanded form appears in their textbook.

Soviet Physics JETP 5, Part 3, 512 (1957)



Central Idea of Fluctuating Hydrodynamics

The equations of hydrodynamics…with no specific form of the stress tensor 
and the heat flux vector simply express the conservation of mass, momentum, 
and energy. In this form they are therefore valid for any motion, including 
fluctuational changes…

The usual expressions for the stress tensor and the heat flux relate them 
respectively to the velocity gradients and the temperature gradient. 
When there are fluctuations in a fluid, there are also spontaneous local 
stresses and heat fluxes unconnected with these gradients; we denote these 
(as) “random quantities”…

From Landau & Lifshitz, Statistical Physics, Part 2



Stochastic Heat Equation
For simple conduction we write the change in energy density, ℇ , in terms of heat flux, 𝑸 , as

Write the deterministic heat flux in Onsager form as

From non-equilibrium thermodynamics the rate of entropy change in a volume Ω is

After a few manipulations we find the thermodynamic force

(Flux) = (Onsager coefficient) * (Thermodynamic “Force”)
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Stochastic Heat Equation (cont.)

𝑸෩ 𝒓, 𝑡 𝑸෩ 𝒓ᇱ, 𝑡ᇱ = 2𝑘୆ 𝜆𝑇ଶ δ 𝑡 − 𝑡ᇱ δ 𝒓 − 𝒓ᇱ

ρc୚

𝜕𝑇

𝜕𝑡
= λ∇ଶ𝑇 + ∇ ȉ 2λ𝑘୆𝑇ଶ 𝐙෨

Comparing                   with Fourier law

tells us that the Onsager coefficient is 

Total heat flux has the form required for linear response theory

so by the fluctuation-dissipation theorem the white noise has correlation

Collecting the above and writing ℇ = ρc୚𝑇 gives the stochastic heat equation, 

where 𝐙෨ is Gaussian white noise

𝒁෩ 𝒓, 𝑡 𝒁෩ 𝒓ᇱ, 𝑡ᇱ = δ 𝑡 − 𝑡ᇱ δ 𝒓 − 𝒓ᇱ

𝑸 = −λ𝛁𝑇

𝑸 = 𝐿𝑿

𝐿 = λ𝑇ଶ

𝑸 = 𝑸 + 𝑸෩ =  λ𝑇ଶ 𝑿 + 𝑸෩



Stochastic Species Diffusion Equation 

𝜕௧ 𝑛 = 𝛁 ⋅ 𝐷𝛁𝑛 + 2𝐷 𝑛 𝒁෩

𝜕௧ 𝑇 = 𝛁 ⋅ 𝜅𝛁𝑇 + α 𝑇 𝒁෩ 𝜅 = 𝜆/𝜌𝑐୚ 𝛼 = 2𝑘஻𝜆/𝜌𝑐୚

We can derive a similar stochastic diffusion equation for mass diffusion in ideal solutions

where

where n is the number density and D is the diffusion coefficient.

Notice the similarity with the stochastic heat equation

The deterministic forms of these two diffusion equations give equivalent solutions 
however the stochastic noises differ so the stochastic solutions differ.

Dean-Kawasaki equation
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Numerics for Stochastic Heat Equation
Write the 1D Stochastic Heat Equation as

Discretize time and space using centered spatial derivatives
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Numerical Schemes
Forward Euler scheme for 

Predictor-Corrector scheme has two steps
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Predictor step

Corrector step

There are other explicit schemes (e.g., Runge-Kutta) and implicit schemes (e.g., Crank-Nicolson)



Discretized White Noise
The white noise is discretized as

where      is a normal (Gaussian) distributed random number.
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Python Notebook StochasticHeat
Demonstration program, StochasticHeat, can be 
downloaded from GitHub. 
Written in Python, it computes the Stochastic Heat 
Equation for temperature fluctuations in an iron rod.  

Program options:
• Periodic or Dirichlet boundary conditions
• Forward Euler or Predictor-Corrector schemes
• Equilibrium or Non-equilibrium (T) conditions

Runs take only a few minutes on a laptop

10 nm

44000 atoms

QR code for GitHub download

https://github.com/AlejGarcia/IntroFHD



Variance of Temperature Fluctuations

δ𝑇௜
ଶ =

𝑘஻ 𝑇௜
ଶ

ρ𝑐௏Δ𝑉

Forward Euler Predictor-Corrector

From statistical mechanics, the equilibrium 
variance of temperature fluctuations is

2 million steps
N = 32 cells

Simulation data

Theory



Spatial Correlation of Fluctuations

Forward Euler Predictor-Corrector

2 million steps
N = 32 cells

From statistical mechanics, the equilibrium 
correlation of temperature fluctuations is

δ𝑇௜δ𝑇௝ = δ𝑇௜
ଶ  δ௜,௝

Overshoot

Undershoot



Static Structure Factor

𝑆௞ = 𝑇෠௞𝑇෠௞
∗

=
𝑘஻𝑇଴

ଶ

ρ𝑐௏
𝑁

Forward Euler Predictor-Corrector

2 million steps
N = 32 cells

From statistical mechanics, the equilibrium 
fluctuation power spectrum (structure factor) is

Donev, et al., CAMCOS 5 149 (2010)



Non-equilibrium Correlation

Predictor-Corrector
20 million steps

N = 32 cells

𝛿𝑇௜𝛿𝑇௝ =
𝑘஻𝑇଴

ଶ

𝜌𝑐௏Δ𝑉
δ௜,௝ +

𝑘஻ ∇𝑇 ଶ

𝜌𝑐௏𝑉
 × ൝

𝑥௜ (ℓ −  𝑥௝) (𝑥௜ < 𝑥௝)

𝑥௝ (ℓ −  𝑥௜) otherwise

For a non-equilibrium system 
with a temperature gradient ∇𝑇

Predictor-Corrector

All data points Without i = j

Garcia, et al., J. Stat. Phys., 47 209 (1987)
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Multi-species Compressible FHD

𝜕

𝜕𝑡
ρ = −∇ ⋅ ρ𝐯

𝜕

𝜕𝑡
ρ௞ = −∇ ⋅ ρ௞𝐯  − ∇ ⋅ 𝑭ഥ௞ + 𝑭௞

෪

డ

డ௧
ρ𝐯 = −∇ ⋅ ρ𝐯 ⊗ 𝐯 + 𝑝𝐈 − ∇ ⋅ 𝚷ഥ + 𝚷෩ + 𝜌𝒈

𝜕

𝜕𝑡
ρ𝐸 = −∇ ⋅ 𝐯 ρ𝐸 + 𝑝  − ∇ ⋅ 𝐐ഥ + 𝐐෩ − ∇ ⋅ 𝚷ഥ + 𝚷෩ ⋅ 𝐯 + 𝜌𝒈 ⋅ 𝐯

Full multi-species compressible fluctuating hydrodynamic (FHD) equations are

Mass (species k) 

Momentum

Energy

Species flux

Stress tensor

Heat flux

Summing the mass equation over species gives the continuity equation

Mass (total) 
For incompressible fluids make pressure 
a Lagrange multiplier that enforces the 
incompressiblity constraint.
Donev, et al. Phys, Fluids, 27(3), 2015



Dissipative Fluxes – Stress Tensor

Πഥ௜௝ = −η
𝜕𝑣௜

𝜕𝑥௝
+

𝜕𝑣௝

𝜕𝑥௜
− δ௜௝ ζ −

2

3
η ∇ ⋅ 𝐯

Π෩ 𝒓, 𝑡 = 2𝑘஻𝑇𝜂𝒵̿ +
𝑘஻ζ 𝑇

3
−

2𝑘஻η𝑇

3
Tr 𝒵̿ 𝐼

Deterministic stress tensor components

Stochastic stress tensor

and 𝒵 is an uncorrelated Gaussian tensor field with zero mean and unit variance.

𝒵̿ =
1

2
𝒵 + 𝒵 𝒯where

η – shear viscosity
ζ – bulk viscosity

P. Español, Physica A 248 77 (1998)



Dissipative Fluxes – Species Flux

𝑭ഥ = 𝜌 Diag 𝑌  𝑫 ∇𝑋 +
𝑋 − 𝑌

𝑝
∇𝑝 +

𝑋χ

𝑇
∇𝑇

𝑭෩ = 𝑩𝒵 𝑩𝑩் = 2𝑘୆ 𝑳 𝑳 =
ρ𝑚ഥ

𝑘୆
 Diag 𝑌  𝑫 Diag(𝑌)

Deterministic species flux

Stochastic species flux

where and

X – mole fraction
Y – mass fraction

The matrix B is computed from the Cholesky factorization of L (i.e., “matrix square root”). 

Note: Single species FHD is much simpler since continuity equation has no noise term.
𝜕

𝜕𝑡
ρ = −∇ ⋅ ρ𝐯

Soret

Giovangigli (1999)

Balakrishnan, et al., Phys. Rev. E 89 013017 (2014)



Dissipative Fluxes – Heat Flux

Deterministic heat flux

Stochastic heat flux

𝑸ഥ = −λ∇𝑇 + 𝑘஻𝑇χ்  Diag(𝑀)ିଵ + ℎ் 𝑭ഥ

𝑸෩ = 2𝑘஻𝑇ଶ𝜆 𝓩 + 𝑘஻𝑇χ்  Diag(𝑀)ିଵ + ℎ் 𝑭෩

M – molecular mass matrix
h – enthalpy density

Note: Single species FHD is much simpler since .

Dufour



Staggered Grid Formulation

Superior to our previous implementations in Balakrishnan, et al., Phys. Rev. E 89 013017 (2014);
Bell et al., Phys. Rev. E 76 016708 (2007); and Garcia et al., J. Stat. Phys. 47 209 (1987).

Numerical algorithm described in Srivastava, et al., Phys. Rev. E 107 015305 (2023)

Cell centered –
Density, Energy, Temperature

Face centered –
Velocity, Species and Heat fluxes

Edge & cell centered –
Stress tensor

Temporal integration uses an explicit, three-stage, stochastic Runge-Kutta (RK3) scheme.



Ne/Kr Mixture in T

xx’

x’ x

x’
x

Spatial correlations of fluctuations for a 
neon/krypton mixture in a temperature gradient.

(upper) Temperature – temperature correlation
(lower) Velocity – density correlation

FHD and particle simulations (DSMC) are in 
excellent agreement; delta correlations when T = 0

Cold
273 K

Hot
517 K

3.8 μm

Equal mass concentrations

𝛿𝑇(𝑥)𝛿𝑇(𝑥′)

𝛿𝑢(𝑥)𝛿𝜌(𝑥′)

Srivastava, et al., Phys. Rev. E 107 015305 (2023)



Ne/Kr Mixture in T

xx’

x’ x

x’
x

Spatial correlations of fluctuations for a 
neon/krypton mixture in a temperature gradient.

(upper) Temperature – temperature correlation
(lower) Velocity – density correlation

FHD and particle simulations (DSMC) are in 
excellent agreement; delta correlations when T = 0

Cold
273 K

Hot
517 K

3.8 μm

Equal mass concentrations

𝛿𝑇(𝑥)𝛿𝑇(𝑥′)

𝛿𝑢(𝑥)𝛿𝜌(𝑥′)

Recall the result for the 
stochastic heat equation



Giant Fluctuation Phenomenon

Experiments show macroscopic fluctuations for interface mixing.
Phenomenon due to correlation of concentration-velocity fluctuations.

5 mm

Top-down view of 
density fluctuations 
during mixing

Vailati, et al., Nature Comm., 2:290 (2011).



Giant Fluctuation
Simulations

Donev, et al., CAMCOS, 9-1:47-105 (2014) 

Initial
State

Deterministic
Hydrodynamics

Molecular
Dynamics

Fluctuating
Hydrodynamics

Molecular dynamics 
simulations of this “giant 
fluctuation” phenomenon 
indistinguishable from 
those using fluctuating 
hydrodynamics.



Simulation Results

Early time

Late time
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- Fluctuating Hydrodynamics
- Hard disk Molecular Dynamics

Excellent quantitative 
agreement between 
molecular dynamics and 
FHD for the form and 
growth rate of the rough 
mixing interface.

Donev, et al., CAMCOS, 9-1:47-105 (2014) 



FHD & Instabilities

Stochastic Hydrodynamics Deterministic Hydrodynamics

Donev, et al., Physics of Fluids, 27(3):037103 (2015)



Mixed-mode Instability

13 s

26 s

51 s

g = 0

Initial

𝑘ିସ

With
gravity

Donev, et al., Physics of Fluids, 27(3):037103 (2015)

The non-equilibrium 
fluctuation signal is 
trampled by the 
large amplitude of 
the hydrodynamic 
instability



FHD & Turbulence

Bell, et al., J. Fluid Mech. 939 A12 (2022) 

Inertial Near Dissipation Far Dis.

Deterministic

FHD

Thermal fluctuations dominate turbulent 
fluctuations in the near-dissipation range, 
that is, for length scales larger than the 
Kolmogorov length.

This theoretical prediction by Greg Eyink
was confirmed by our FHD simulations of 
homogeneous, isotropic, incompressible 
turbulence.

Kolmogorov 
wavenumber

Also verified in DSMC particle simulations



FHD & Chemistry

Deterministic

Stochastic (FHD)

Kim, et al., J. Chem. Phys., 146, 124110 (2017)

Chemical reactions can be incorporated 
into FHD by adding source terms to the 
species equation.

𝜕

𝜕𝑡
ρ௞ = −∇ ⋅ ρ௞𝐯  − ∇ ⋅ 𝑭ഥ௞ + 𝑭௞

෪ + 𝛺ത௞ + 𝛺௞
෪

From the chemical Langevin equation

𝛺ത௞ =  ෍ 𝜈௞,௥ 𝑎௞( ρ௜ )

୰ୣୟୡ୲୧୭୬ୱ

௥

𝛺௞
෪ =  ෍ 𝜈௞,௥ 𝑎௞( ρ௜ ) 

୰ୣୟୡ୲୧୭୬ୱ

௥

𝒵௥ 𝜈௞,௥ 

𝑎௞( ρ௜ )

- Stochiometric coefficients

- Propensity (rate) function



FHD & Electrolytes

Simulation results give the 
expected “giant fluctuations” 
spectrum, which is slightly 
different for charged species.

𝑘௫
ସ ×  𝛿𝜌Na 𝑘௫ 𝛿𝜌Na 𝑘௫

∗Fresher Water

Saltier Water

300 
nm

𝜆஽ = 0.4 − 1.4 nm
Charged

Neutral

Peraud, et al., Phys. Rev. F, 1(7):074103 (2016)

By replacing chemical potential with electrochemical potential 
we can model charged species, such as ions in electrolyte solutions



Barker, et al., Proc. Nat. Acad. Sci., 120 e2306088120 (2023)

FHD & Multi-phase fluids

Can us diffuse interface models 
(e.g., Cahn-Hillard) in FHD to study 
multi-fluid interfaces. 

We have simulated the Rayleigh-
Plateau instability for liquid 
cylinders pinching into droplets.

Currently investigating droplets on 
solid surfaces with contact angle 
boundary conditions.

Breakup of a liquid torus into droplets



Summary & Remarks
Here are some closing thoughts:

• Thermal fluctuations can produce interesting meso- and 
macroscopic phenomena (e.g., giant fluctuation effect). 

• Fluctuating hydrodynamics is a powerful methodology for 
the study of these phenomena.

• There are accurate and efficient numerical methods for the 
fluctuating hydrodynamic equations.

• Simple FHD models, such as the stochastic heat equation, 
are suitable for university-level students.

• Many opportunities exist for applying FHD to problems that 
are of interest to mathematicians, scientists, and engineers.  

• Finally…

https://github.com/AMReX-FHD/



In Memoriam

Jose Maria Ortiz de Zarate
1964 - 2020

Aleksandar Donev
1980 - 2023



Thank you for your 
attention and participation

Questions?

QR code for GitHub download

https://github.com/AlejGarcia/IntroFHD

Vorticity in compressible turbulence simulations
(left) Deterministic | (right) Stochastic




