

SJSU SAN JOSÉ STATE UNIVERSITY

Alejandro L. Garcia San Jose State University & Berkeley Lab.

Outline

- Direct Simulation Monte Carlo
- Surprising Poiseuille Flow
- Surprising Couette Flow
- Surprising "Phantom" Flow
- Surprising Diffusive Mixing
- Surprising Brownian Motion

Scales for Dilute Gases

DSMC Algorithm

DSMC resembles MD except in the evaluation of collisions

- Initialize system with particles
- Loop over time steps
 - Create particles at open boundaries *
 - Move *all* the particles *
 - Process any interactions of particle & boundaries *
 - Sort particles into cells
 - Perform random collisions *
 - Sample statistical values

Example: Flow past a sphere

G.A. Bird, *The DSMC Method* (2013) ALG, *Numerical Methods for Physics* (2015)

Popular public domain codes: dsmcFoam and Sparta

DSMC Collisions

- Sort particles into spatial collision cells
- Loop over collision cells
 - Compute collision frequency in a cell
 - Select random collision partners within cell
 - Process each collision

Collision pairs with large relative velocity are more likely to collide but they do *not* have to be on a collision trajectory

Collisions (cont.)

Post-collision velocities (6 variables) given by:

- Conservation of momentum (3 constraints)
- Conservation of energy (1 constraint)
- Random collision solid angle (2 choices)

Direction of v_r' is random

Can also model internal molecular energy (e.g., vibrational) as well as chemical reactions (e.g., disassociation)

Discoveries and Confirmations

Fluid dynamic effect first discovered by DSMC and later confirmed by theory

Fluid dynamic effect first predicted by theory and later confirmed by DSMC

Nano-fluidics in Disk Drives

Collision mean free path in air is about 60 nm Slider (1 mm long) flies about 30 nm above platter

Nano-fluidics in Disk Drives

Collision mean free path in air is about 60 nm Slider (1 mm long) flies about 30 nm above platter

This is like a 747 flying 1.5 mm above ground.

Boeing 747: 70.6 m long

exponentially with height

DSMC Simulation of Air Slider

F. Alexander, ALG, and B. Alder, Phys. Fluids 6 3854 (1994).

Fluctuations & Measurements

In particle simulations (DSMC, MD, etc.) due to random fluctuations the fractional error in the measured fluid velocity is

$$E_{u} = \frac{\sigma_{u}}{|u_{x}|} = \frac{\sqrt{\langle \delta u_{x}^{2} \rangle} / \sqrt{S}}{|u_{x}|} \approx \frac{1}{\sqrt{SN}} \frac{1}{Ma} \qquad \text{(from statistical mechanics)}$$

where *S* is number of samples, Ma is Mach number.

Fluctuations & Measurements

In particle simulations (DSMC, MD, etc.) due to random fluctuations the fractional error in the measured fluid velocity is

$$E_{u} = \frac{\sigma_{u}}{|u_{x}|} = \frac{\sqrt{\langle \delta u_{x}^{2} \rangle} / \sqrt{S}}{|u_{x}|} \approx \frac{1}{\sqrt{SN}} \frac{1}{Ma} \qquad \text{(from statistical mechanics)}$$

where *S* is number of samples, Ma is Mach number.

For desired accuracy of E_u = 1% with N = 100 particles per cell

$$S \approx \frac{1}{N \mathrm{Ma}^2 E_u^2} \propto \frac{1}{\mathrm{Ma}^2}$$

 $S \approx 10^2$ samples for Ma = 1.0 (Aerospace flow) $S \approx 10^8$ samples for Ma = 0.001 (Microscale flow)

N. Hadjiconstantinou, ALG, M. Bazant, and G. He, J. Comp. Phys. 187 274-297 (2003)

Outline

- Direct Simulation Monte Carlo
- Surprising Poiseuille Flow
- Surprising Couette Flow
- Surprising "Phantom" Flow
- Surprising Diffusive Mixing
- Surprising Brownian Motion

Plane Poiseuille Flow

Cause fluid flow as accelerationdriven or as pressure-driven Poiseuille flow

Channel widths roughly 10 to 100 mean free paths (Kn \approx 0.1 to 0.01)

Fluid Velocity

Velocity profile across the channel (wall-to-wall)

Note: Flow is subsonic & low Reynolds number (Re = 5)

Temperature

Temperature profile across the channel (wall-to-wall)

M. Malek Mansour, F. Baras and ALG, *Physica A* **240** 255 (1997). Y. Zheng, ALG, and B. Alder, *J. Stat. Phys.* **109** 495-505 (2002).

Temperature

Temperature profile across the channel (wall-to-wall)

M. Malek Mansour, F. Baras and ALG, *Physica A* **240** 255 (1997). Y. Zheng, ALG, and B. Alder, *J. Stat. Phys.* **109** 495-505 (2002).

Heat Flux & Temperature Gradient

Heating occurs inside the system by viscous shear and heat flows to the walls.

Near the center of the channel the heat is flowing from *cold to hot* !

Kinetic Theory - BGK model

Kinetic theory calculations using BGK model predicts the dip.

M. Tij, A. Santos, *J. Stat. Phys.* **76** 1399 (1994) M. Malek Mansour, F. Baras and ALG, *Physica A* **240** 255 (1997).

Burnett Theory for Poiseuille

Pressure profile also anomalous with a gradient normal to the walls. Agrees with Burnett's hydrodynamic theory.

Super-Burnett Theory

Outline

- Direct Simulation Monte Carlo
- Surprising Poiseuille Flow
- Surprising Couette Flow
- Surprising "Phantom" Flow
- Surprising Diffusive Mixing
- Surprising Brownian Motion

Slip Length

The velocity of a gas moving over a stationary, thermal wall has a "slip length."

This effect was predicted by Maxwell; confirmed by Knudsen.

Physical origin is difference between impinging and reflected velocity distributions of the gas molecules.

Slip Length

The velocity of a gas moving over a stationary, thermal wall has a "slip length."

This effect was predicted by Maxwell; confirmed by Knudsen.

Physical origin is difference between impinging and reflected velocity distributions of the gas molecules.

Slip length for thermal wall is about one mean free path.

Slip increases if some particles reflect specularly; define accommodation coefficient, α , as fraction of thermalize (non-specular) reflections.

Cylindrical Couette Flow

Dilute gas between concentric cylinders. Outer cylinder fixed; inner cylinder rotating. Low Reynolds number (Re \approx 1) so flow is laminar; also subsonic.

Velocity Slip in Couette Flow

Simple prediction of angular velocity including slip is mostly in qualitative agreement with DSMC data.

 ζ is the slip length.

K. Tibbs, F. Baras, ALG, Phys. Rev. E 56 2282 (1997)

Diffusive and Specular Walls

so $V = \omega r$

Anomalous Couette Flow

At certain values of accommodation, the angular fluid speed is minimum *within* the fluid.

K. Tibbs, F. Baras, ALG, Phys. Rev. E 56 2282 (1997)

Anomalous Rotating Flow

BGK Theory

Excellent agreement between DSMC data and BGK calculations and BGK theory confirms the velocity minimum at low accommodation.

K. Aoki, H. Yoshida, T. Nakanishi, ALG, *Physical Review E* 68 016302 (2003)

Outline

- Direct Simulation Monte Carlo
- Surprising Poiseuille Flow
- Surprising Couette Flow
- Surprising "Phantom" Flow
- Surprising Diffusive Mixing
- Surprising Brownian Motion

Calculating Fluid Velocity

How should one calculate local fluid velocity from particle velocities in DSMC (or in MD)?

Instantaneous Fluid Velocity

Center-of-mass velocity in a cell C

$$u = \frac{J}{M} = \frac{\sum_{i \in C}^{N} m v_i}{m N}$$

Average particle velocity

$$\overline{v} = \frac{1}{N} \sum_{i \in C}^{N} v_i$$

Note that $u = \overline{v}$ so these are equivalent

Mean Fluid Velocity

Instantaneous fluid velocity is defined as,

$$u = \frac{J}{M} = \frac{\sum_{i \in C}^{N} m v_i}{mN} = \frac{1}{N} \sum_{i \in C}^{N} v_i$$

But we have two ways to define mean fluid velocity, averaged over independent samples:

$$\langle u \rangle = \left\langle \frac{J}{M} \right\rangle \qquad \qquad \langle u \rangle_* =$$

Which definition gives the correct hydrodynamic fluid velocity?

"Phantom" Fluid Velocity

Mean instantaneous fluid velocity, $\langle u \rangle$, measurement gives an anomalous flow in a <u>closed</u> system at steady state with ∇ T.

$$\left\langle u \right\rangle = \left\langle \frac{J}{M} \right\rangle \propto x(L-x)\nabla T$$

DSMC

Hot
$$\rightarrow \rightarrow \rightarrow$$
 Cold

"Phantom" Fluid Velocity

Mean instantaneous fluid velocity measurement gives an anomalous flow in a <u>closed</u> system at steady state with ∇ T.

Using the cumulative mean, $\langle u \rangle_*$, gives the expected result of zero fluid velocity.

$$\left\langle u \right\rangle = \left\langle \frac{J}{M} \right\rangle \propto x(L-x)\nabla T$$

DSMC

Hot
$$\longrightarrow \longrightarrow \longrightarrow$$
 Cold

$$\langle u \rangle_* = \frac{\langle J \rangle}{\langle M \rangle} = 0$$

Measured Fluid Velocity

Mean instantaneous fluid velocity, $\langle u \rangle$, measurement gives an anomalous flow in a <u>closed</u> system at steady state with ∇T .

Using the cumulative mean, $\langle u \rangle_{*}$, gives the expected result of zero fluid velocity.

M. Tysanner and ALG, *J. Comp. Phys.* **196** 173-83 (2004).

Landau Model for Intelligence

Apply the Landau model to university students:

Genius

Intellect = 3

Not Genius

Intellect = 1

Three Semesters of Teaching

First semester

Second semester

Third semester

Average = 3

Three Semesters of Teaching

First semester

Average = 3

Second semester Average = 1

Third semester

Three Semesters of Teaching

First semester

Second semester

Third semester

Average = 2

Average = 3

Average Student?

How do you estimate the intellect of the average student?

* Average of instantaneous values for the three semesters:

$$\left\langle u\right\rangle = \frac{3+1+2}{3} = 2$$

<u>Or</u>

* Cumulative average over all students:

$$\left\langle u \right\rangle_* = \frac{2 \times 3 + 14 \times 1}{16} = 1.25$$

Average Student?

How do you estimate the intellect of the average student?

* Average of instantaneous values for the three semesters:

$$\left\langle u\right\rangle = \frac{3+1+2}{3} = 2$$

<u>Or</u>

* Cumulative average over all students:

$$\left\langle u\right\rangle_* = \frac{2\times3 + 14\times1}{16} = 1.25$$

Significant difference because there is a *correlation* between class size and quality of students in the class.

Bias in Instantaneous Fluid Velocity

From the definitions,

$$\langle u \rangle \approx \langle u \rangle_* \left(1 + \frac{\langle \delta N^2 \rangle}{\langle N \rangle^2} \right) - \frac{\langle \delta J \delta N \rangle}{m \langle N \rangle^2} = \langle u \rangle_* - \frac{\langle \delta \rho \delta u \rangle}{\langle \rho \rangle}$$

Fluctuating hydrodynamics theory predicts a correlation,

$$\langle \delta \rho(x) \delta u(x) \rangle \propto -x(L-x) \nabla T$$

This prediction agrees perfectly with observed effect.

Similar effect occurs with temperature, pressure, etc.

Density-Velocity Correlation

Correlation of density-velocity fluctuations under ∇T

ALG, Phys. Rev. A 34 1454 (1986).

Outline

- Direct Simulation Monte Carlo
- Surprising Poiseuille Flow
- Surprising Couette Flow
- Surprising "Phantom" Flow
- Surprising Diffusive Mixing
- Surprising Brownian Motion

Giant Fluctuations in Mixing

Fluctuations grow large during mixing even when the two species are identical (e.g., red & blue hard spheres).

The effect is driven by a coupling of concentration and velocity fluctuations.

This is <u>**not</u>** a hydrodynamic instability!</u>

Experimental Observations

In microgravity experiments fluctuations during mixing grow to millimeter size

-1%

-2%

-3%

Concentration-Velocity Correlation

A. Donev, ALG, A. de la Fuente, and J.B. Bell, *J. Stat. Mech.* 2011:P06014 (2011)

Diffusion Flux & Fluctuations

Consider a monatomic gas of "red" and "blue" particles with a steady state gradient imposed by wall boundaries.

The non-equilibrium correlation $\langle \delta \hat{c} \delta \hat{u}_{\parallel} \rangle$ enhances the effective flux of concentration even at this steady state.

A. Donev, ALG, A. de la Fuente, and J.B. Bell, *Phys. Rev. Lett.*, 106(20): 204501 (2011)

Fluctuation Enhanced Diffusion

Can separate the contributions to the concentration flux as,

$$\langle \mathbf{F} \rangle = \langle \rho_1 \mathbf{u}_1 \rangle = \langle \rho_1 \rangle \langle \mathbf{u}_1 \rangle + \langle \delta \rho_1 \delta \mathbf{u}_1 \rangle$$
$$D_{\text{eff}} \nabla c \quad D_0 \nabla c \quad \Delta D \nabla c$$

In DSMC we can easily measure

$$\langle
ho_1
angle, \langle {f u}_1
angle, \langle
ho_1 {f u}_1
angle$$
 and $abla c$

Find the bare diffusion coefficient D_0 and the total effective diffusion coefficient D_{eff}

Surprising Diffusion

Spectrum of hydrodynamic fluctuations is truncated at wavenumbers given by the size of the physical system.

The wider system can accommodate long wavelength fluctuations, thus it has an enhanced diffusion rate. *Diffusion coefficient depends on system width!*

DSMC and FNS Results (Quasi-2D)

Outline

- Direct Simulation Monte Carlo
- Surprising Poiseuille Flow
- Surprising Couette Flow
- Surprising "Phantom" Flow
- Surprising Diffusive Mixing
- Surprising Brownian Motion

Adiabatic Piston

Fluctuations in DSMC can model phenomena, like Brownian motion, that rely on fluctuations.

Chambers have gases at different temperatures, equal pressures. Walls are perfectly elastic (specular reflection, accommodation $\alpha = 0$)

Adiabatic Piston

Fluctuations in DSMC can model phenomena, like Brownian motion, that rely on fluctuations.

Chambers have gases at different temperatures, equal pressures. Walls are perfectly elastic (specular reflection, accommodation $\alpha = 0$)

The piston moves (despite equal pressures) and the gases on the two sides reach a common temperature!

Adiabatic Piston by DSMC

Heat is conducted between the chambers by the non-equilibrium Brownian motion of the adiabatic piston.

M. Malek Mansour, ALG, and F. Baras, Phys. Rev. E 73 016121 (2006)

DSMC / PDE Hybrids

Each approach has its own relative advantages

PDE Solvers

- Fast (few variables,
 More Physics simple relations)
- Efficient and accurate (high • order CFD methods)
- Approximations available (incompressible, inviscid)

DSMC

- (molecular details)
- Thermal fluctuations
- Stable (H-theorem)

DSMC / PDE Hybrids use Navier-Stokes solver in flow regions where DSMC is not required.

Hybrid for Adiabatic Piston

Fluctuating Hydrodynamics

Landau introduced fluctuations into the Navier-Stokes equations by adding white noise fluxes of stress and heat.

$$\partial \mathbf{U}/\partial t + \nabla \cdot \mathbf{F} = \nabla \cdot \mathbf{D} + \nabla \cdot \mathbf{S} \quad \text{where} \quad \mathbf{U} = \begin{pmatrix} \rho \\ \mathbf{J} \\ E \end{pmatrix}$$

Hyperbolic Fluxes Parabolic Fluxes Stochastic Fluxes
$$\mathbf{F} = \begin{pmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \mathbf{v} + P \mathbf{I} \\ (E+P) \mathbf{v} \end{pmatrix} \quad \mathbf{D} = \begin{pmatrix} 0 \\ \tau \\ \kappa \nabla T + \tau \cdot \mathbf{v} \end{pmatrix} \quad \mathbf{S} = \begin{pmatrix} 0 \\ \mathcal{S} \\ \mathcal{Q} + \mathbf{v} \cdot \mathcal{S} \end{pmatrix},$$

1

We have adapted standard numerical schemes from CFD to solve these stochastic PDEs.

Stochastic vs. Deterministic PDEs

Compare results from an all-DSMC simulation with hybrids DSMC/PDE simulations.

Long-time relaxation of the piston position is *wrong* using deterministic PDEs in the hybrid.

A. Donev, J.B. Bell, ALG, and B. Alder, SIAM Multiscale Model. Sim. 8 871-911 (2010)

Conclusions

- DSMC is a powerful engineering design tool (e.g., disk drive)
- DSMC has discovered interesting hydrodynamic effects in Poiseuille and Couette flows.
- DSMC has confirmed theoretical predictions for the enhancement of diffusion due to non-equilibrium fluctuations.
- DSMC must be used carefully due to these fluctuations (e.g., measuring fluid velocity; Brownian effects in hybrids).

Thank you for your attention

For more information, visit: ccse.lbl.gov www.algarcia.org

Supported by Dept. of Energy