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Physical Scales for Dilute GasesPhysical Scales for Dilute Gases
DSMC is the dominant numerical 

algorithm at the kinetic scale

Collision T/T

algorithm at the kinetic scale

Collision
Gradient Scale

Molecular
Diameter

System SizeSystem Size

Quantum scale Kinetic scale Hydrodynamic scale

DSMC applications are expanding to multi-scale problems



Molecular Dynamics for Dilute GasesMolecular Dynamics for Dilute Gases

M l l d iMolecular dynamics 
inefficient for simulating 
the kinetic scale. 

Collision

Relevant time scale is 
mean free time but MDmean free time but MD 
computational time step 
limited by time of collision.

DSMC time step is large 
because collisions are 
evaluated stochastically.

Volume of potential 
collision partners



Direct Simulation Monte CarloDirect Simulation Monte Carlo
Development of DSMC

• DSMC developed by Graeme Bird (late 60’s)
• Popular in aerospace engineering (70’s)

e e op e t o S C

Popular in aerospace engineering (70 s)
• Variants & improvements (early 80’s)
• Applications in physics & chemistry (late 80’s)
• Used for micro/nano-scale flows (early 90’s)
• Extended to dense gases & liquids (late 90’s)
• Used for granular gas simulations (early 00’s)• Used for granular gas simulations (early 00 s)
• Multi-scale modeling of complex fluids (late 00’s)

DSMC is the dominant numerical methodDSMC is the dominant numerical method 
for molecular simulations of dilute gases



Particle vs ContinuumParticle vs. Continuum

When is the continuumWhen is the continuum 
description of a gas not 

accurate? We 
are 

here

Rarefied/ 
Aerospace

Knudsen
Number =

Mean Free Path

System Length

here

y g

When Kn > 0.1, continuum 
description is not accurate

Equilibrium fluctuations 
are noticeable when the 
number of particles < 106

Microscale 
Flows

number of particles < 10 . 

 – inter-atomic spacing
d – atomic diameterFrom G.A. Bird



DSMC AlgorithmDSMC Algorithm

• Initialize system with particles
Example: Flow past a sphere

Initialize system with particles
• Loop over time steps

– Create particles at open 
boundariesboundaries

– Move all the particles
– Process any interactions of 

i l & b d iparticle & boundaries
– Sort particles into cells
– Sample statistical values
– Select and execute random 

collisions

G.A. Bird, Molecular Gas Dynamics and Direct Simulation of Gas Flows, Clarendon, Oxford (1994) 
F. Alexander and A. Garcia, Computers in Physics, 11 588 (1997)



Random NumbersRandom Numbers
Need a high-quality random number generator for the uniform 
(0 1) distribution such as Mersenne Twister(0,1) distribution, such as Mersenne Twister.

Many distributions (e.g., Gaussian, exponential) may be 
generated by the inversion method:generated by the inversion method: 

Generate random value x with distribution P(x) as 
x = f (R) where R is uniformly distributed in (0,1).

Most other distributions are generated by the accept-reject 
method: 

Draw xtry uniformly in the range of x;
Accept it if P(xtry) > max{P(x)}R else draw again.

Be careful to use high-quality algorithms and be sure that you 
verify your implementation with independent testing.



InitializationInitialization
Divide the system into cells and generate particles in each cell 

di t d i d d it fl id l it d t taccording to desired density, fluid velocity, and temperature.

From density, determine number of particles in cell volume, N, 
either rounding to nearest integer or from Poisson distribution.

Assign each particle a position in the cell, either uniformly orAssign each particle a position in the cell, either uniformly or 
from the linear distribution using the density gradient.

From fluid velocity and temperature assign each particle aFrom fluid velocity and temperature, assign each particle a 
velocity from Maxwell-Boltzmann distribution P(v; {u,T}) or 
from the Chapman-Enskog distribution                          .}),,,{;( TTP uuv

Be careful initializing particles for initial value problems.



Ballistic MotionBallistic Motion
Particles motion is ballistic;Particles motion is ballistic; 
during a time step,  particle 
positions are updated as,

r(t + t) = r(t) + v(t) 

The particles move without 
interaction and can even overlap.

For transient flows, on the first time step use ½ (Strang
splitting) to maintain accuracy. If measuring non-conserved 

i bl ( fl ) th ti t th livariables (e.g., fluxes) then time-center the sampling 
(half move, sample, half move, collisions) for all steps.



Simple BoundariesSimple Boundaries

With periodic boundaries particles 
are re-introduced on the opposite 
side of the system Remove

Inject

side of the system.

Specular surfaces modeled by 
ballistic (mirror) reflection of 
point particlespoint particles.

Be careful with corners.

Be careful with body forces.



Thermal WallsThermal Walls
A more realistic treatment of a 
material surface is a thermal wall, 
which resets the velocity of a 
particle as a biased-Maxwellian

uw

particle as a biased-Maxwellian
distribution,

x

y

zz

These distributions 
(exponential and(exponential and 
Gaussian) are simple to 
generate by inversion.

Walls can also be part-thermal, part-specular (accommodation).



Reservoir BoundaryReservoir Boundary
Inflow/outflow boundary conditions commonly treated as a 

i i h i d i fl id l ireservoir with given density, fluid velocity, temperature. 

Particles in the main system are removed if they cross the y y
boundary into the reservoir.

Particles injected from reservoir to main system by either:Particles injected from reservoir to main system by either:
• Surface generator: From number flux determines number 
to be injected; generate particle velocities from surface 
di t ib ti ( i fl M lli )distribution (e.g., inflow Maxwellian).
• Volume generator: Initialize a “ghost cell” with particles 
before the ballistic move; discard any that do not cross the 
boundary into the main system during the move phase.



Traditional DSMC Collisions
S l t d• Sort particles into spatial 

collision cells
lli i ll

Selected
collision
partners

• Loop over collision cells
– Compute collision 

frequency in a cellfrequency in a cell
– Select random collision 

partners within cell
– Process each collision

Collision pair with large relative velocity are more likely
to collide but they do not have to be on a collision trajectory.



Collision RateCollision Rate
Number of collisions that should occur during time step is

here the f nctional form of the collision rate R

g p

 ,...,,, rcoll vdVNRM 

where the functional form of the collision rate, R,
depends on the intermolecular model.

For hard spheres of diameter d, the collision rate is,
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where is      the average relative velocity.rv
V2

Early DSMC implementations used N N instead ofEarly DSMC implementations used N Nav instead of 
N(N 1), where Nav is an estimated average value of N. 



Collision SelectionsCollision Selections
To avoid having to compute the average relative velocity 
for all particle pairs in a cell a larger number offor all particle pairs in a cell, a larger number of 
attempted collisions are selected and some are rejected.

Number of collisions attempted during a time step is,Number of collisions attempted during a time step is,

 max,,, vdVNRM cand 

where vmax ≥ max{vr} is estimated maximum relative velocity.
An attempted collision is accepted with probability,
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Early DSMC implementations rounded M d down andEarly DSMC implementations rounded Mcand down and 
carried fraction to next time step. Modern approach is to 
randomly round to nearest integer (or use Poisson dist.). 



Post-Collision VelocitiesPost Collision Velocities

Post-collision velocities Direction of vr’ Post-collision velocities 
(6 variables) given by:
• Conservation of

v1v1’
is uniformly 
distributed in 
the unit sphere• Conservation of 

momentum (3 constraints)
• Conservation of energy

v2 v2’
Vcm

e u sp e e

• Conservation of energy   
(1 constraint)

• Random collision solid

2

vr
vr’

Random collision solid 
angle (2 choices)

S l i f h lli i l i iSelection of the post-collision velocities 
must satisfy detailed balance. 



R d S lid A lRandom Solid Angle
Post collision relative velocity is



zPost-collision relative velocity is,

The azimuthal angle is just 

y

The azimuthal angle is just, 

Polar angle distribution is,

But with change of variable,
x

So,

Generated by inversion method



Molecules & “Simulators”Molecules & Simulators
In DSMC the number of simulation particles (“simulators”) is 
typically a small fraction of the number physical molecules.yp y p y
Each simulator represents Nef physical molecules.

Nef = 2

Physical Molecules DSMC Simulators

Accuracy of DSMC goes as 1/N; for traditional DSMC 
about 20 particles per collision cell is the rule-of-thumb. 



DSMC “Parliament”
DSMC dynamics is correct if:

• The DSMC simulators are an 
unbiased sample of the physical 
population (unbiased parliament).
• Collision rate is increased by N f so the number of collisionsCollision rate is increased by Nef so the number of collisions 
per unit time for a simulator is same as for a physical molecule.
• In sampling, each simulator counts as Nef physical molecules.

Early DSMC implementations used a different representation, 
rescaling the simulator diameter and mass to maintain therescaling the simulator diameter and mass to maintain the 
same physical mean free path and mass density. 



Ballistic & Collisional TransportBallistic & Collisional Transport
By their ballistic motion particlesBy their ballistic motion particles 
carry mass, momentum and energy.
In a dilute gas, this is the only v v
source of transport.

In DSMC, momentum and energy are 
also transported by the collisions. 
Th l th lli i ll thThe larger the collision cell, the more 
collisional transport (greater average 
separation between particle pairs).



Cell Size and Time StepCell Size and Time Step
Can calculate collisional transport by Green-Kubo theory; p y y
error is quadratic in cell size and time step.

Collisional transport is incorrect so to minimize it the cellCollisional transport is incorrect so to minimize it the cell 
size in DSMC is limited to a fraction of a mean free path.

F i il h i i li i d f i fFor similar reasons, the time step is limited to a fraction of 
a mean collision time.

Due to symmetry, the collisional transport does not affect 
the pressure. However, if we restrict collisions to only 
particles moving towards each other then this symmetry is p g y y
broken and DSMC has a non-ideal gas equation of state. 



Nearest Particle Collision PartnerNearest Particle Collision Partner
New DSMC implementations minimize collisional transport p p
error by choosing collision partner as closest particle in cell.

To avoid bias due to re-collisions a particle pair is notTo avoid bias due to re-collisions, a particle pair is not 
allowed to collide twice (choose next-nearest particle).

T i l iTwo common implementations are:

• Transient Adaptive Sub-cells (introduced by Bird)p ( y )
• Virtual Sub-cells (introduced by LeBeau, et al)

M.A. Gallis, J.R. Torczynski, D.J. Rader, G.A. Bird, J. Comp. Phys., 228 4532-48 (2009)



Fluctuations in DSMCFluctuations in DSMC
• Hydrodynamic fluctuations (density temperature• Hydrodynamic fluctuations (density, temperature, 

etc.) have nothing to do with Monte Carlo aspect 
of DSMC.o S C.

• Variance of fluctuations in DSMC is exact at 
equilibrium (due to uniform distribution for q (
position and Maxwell-Boltzmann for velocity).

• Time-correlations correct (at hydrodynamic scale)
• Non-equilibrium fluctuations correct (at 

hydrodynamic scale)



Sampling and Fluctuations
Measurements in DSMC are done by statistical samplingMeasurements in DSMC are done by statistical sampling. 

For volume measurements 
the particles are sorted intothe particles are sorted into 
sampling cells and polled.

vi

For surface measurements, 
particles crossing a surface 
during a time interval are g
counted.

Many sample measurements are required due to fluctuationsMany sample measurements are required due to fluctuations. 



Error BarsError Bars
Error bars may be estimated by equilibrium variancesError bars may be estimated by equilibrium variances 

since non-equilibrium corrections are small.
In general the standard deviation for sampled valuedIn general, the standard deviation for sampled valued 

goes as 1/N where N is the number of simulators.

If each simulator represents one molecule then the 
fluctuations are the same as in the physical system.

If Nef >> 1 then the fluctuations are much greater than 
in the physical system, with correspondingly larger 
error bars.



Statistical Error (Fluid Velocity)
Fractional error in fluid velocityFractional error in fluid velocity
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where S is number of samples, Ma is Mach number.where S is number of samples, Ma is Mach number.

For desired accuracy of Eu = 1% with N = 100 simulators/cell
11

S  102 samples for Ma =1.0  (Aerospace flow) 
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S  108 samples for Ma = 0.001 (Microscale flow)
N. Hadjiconstantinou, A. Garcia, M. Bazant, and G. He, J. Comp. Phys. 187 274-297 (2003). 



Statistical Error (Other Variables)
Fractional error in density temperature pressureFractional error in density, temperature, pressure
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Fractional error in temperature difference
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For given E number of samples S  1/Ma4

where Brinkman number; Br  1, if T due to viscous heating
SNMa

For given ET , number of samples S  1/Ma4



Statistical Error (Fluxes)
Fractional error in stress and heat fluxFractional error in stress and heat flux

E 11
 E 1Br
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SN

E
MaKn

Comparing state versus flux variables

SN
Eq MaKn 2

Comparing state versus flux variables 

uEE  TEE 
Kn

E  KnqE 

Typically Kn < 0.1 so error bars for fluxes significantly 
greater; measurements such as drag force are difficult for 
low Mach number flows. 



Variance Reduction in DSMC
Variance reduction in DSMC has been difficult to achieveVariance reduction in DSMC has been difficult to achieve, 

in part because DSMC is already an importance 
sampling algorithm for the Boltzmann equation.

Attempts to mollify the fluctuations in DSMC, while 
i t ki ti l h b tlpreserving accuracy at kinetic scales, have been mostly 

unsuccessful.

A promising approach is Hadjiconstantinou’s low-variance 
algorithm, which is loosely based on DSMC. 



Fluctuations and Statistical Bias

Given the presence of fluctuations in DSMC, we need 

Suppose we dynamically vary the cell sizes so that each cell has the

to be careful to avoid all sources of statistical bias.

Suppose we dynamically vary the cell sizes so that each cell has the 
same number of particles.

This is helpful in thatThis is helpful in that 
DSMC is not accurate 
when N is too small.

Yet there could be unintended consequences when we replace 
fl i i N i h fl i i Vfluctuations in N with fluctuations in V.



DSMC Collision RateDSMC Collision Rate
The average number of collisions in a cell isg
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Brownian Systemsy
Fluctuations in DSMC are not always a nuisance; there 
are interesting phenomena that rely on fluctuations

P
i

Pressure Pressure

are interesting phenomena that rely on fluctuations.

“Adiabatic” 
Piston
Problem

ColdHot

i
s
t Problem
o
n

Chambers have gases at different temperatures, equal pressures.
Walls are perfectly elastic yet gases come to common temperature.

Heat is conducted between the chambers by the 
non-equilibrium Brownian motion of the piston.How?



Adiabatic Piston by DSMC
Initial State: X = L/4, M = 64 m
NL = NR = 320, TR = 3 TL
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Feynman’s Ratchet & Pawl

HOT
COLDCarnot* 

engine 
driven by HOTdriven by 
fluctuations

B iBrownian 
motors and 
nanoscale 
machinesmachines

* almost



dViolate 2nd Law of Thermo?

WARM
WARM

NO. Fluctuations 
also lift the pawl, 
dropping the pp g
weight back down.

pawl



Triangula Brownian Motorg
Feynman’s complicated mechanical geometry not needed.
An asymmetrically shaped Brownian object in a non-equilibrium 
system (e.g., dual-temperature distribution) is enough.

Hot gas Cold gasHot gas Cold gas

P. Meurs, C. Van den Broeck, and A. Garcia, Physical Review E 70 051109 (2004). 



Algorithm RefinementAlgorithm Refinement
Algorithm Refinement is a multi-algorithm hybrid g g y
methodology based on Adaptive Mesh Refinement.

At the finest level orAt the finest level or 
resolution, instead 
of refining the mesh 

“ fi ” thyou “refine” the 
algorithm (change 
to a model with 
more physics).

This refinementThis refinement 
may be adaptive.



Particle/PDE AR HybridParticle/PDE AR Hybrid

P ti l /PDE
http://cims.nyu.edu/~donev/FluctHydro/Hybrid.2D.sphere.plug.inst.mov

Particle/PDE 
Algorithm 
Refinement forRefinement for 
flow past a sphere.

Stationary particle

Molecular simulationMolecular simulation
of solvent fluid

Interface

Continuum simulation
of solvent fluid

Note: Continuum calculation done everywhere



Advances in Algorithms RefinementAdvances in Algorithms Refinement

Stochastic Particle Algorithms – Our original AR method g g
was limited to dilute gases using the Direct Simulation 
Monte Carlo scheme. Have developed more advanced 
stochastic particle schemes for non-ideal fluidsstochastic particle schemes for non-ideal fluids.

Stochastic Continuum Algorithms – Our original AR method g g
used a deterministic, explicit scheme for the full 
Navier-Stokes equations. Have developed stochastic 
PDE schemes to capture hydrodynamic fluctuationsPDE schemes to capture hydrodynamic fluctuations.

Coupling Issues – Perfecting the coupling of particle and p g g p g p
PDE schemes is challenging due to fluctuations.



Stochastic Navier Stokes PDEsStochastic Navier-Stokes PDEs
Landau introduced fluctuations into the Navier-Stokes 
equations by adding white noise fluxes of stress and heat.

Hyperbolic Fluxes Parabolic Fluxes Stochastic Fluxes



Fluctuating Hydrodynamic SolversFluctuating Hydrodynamic Solvers
We now have simple, accurate, and efficient finite 
volume schemes for solving the stochastic Navier-
Stokes PDEs of fluctuating hydrodynamics.

wherewhere

J.B. Bell, ALG, and S. Williams, Physical Review E 76 016708 (2007)
A. Donev, E. Vanden-Eijnden, ALG, and J. B. Bell, CAMCOS, 5(2):149-197, (2010)



Comparison with DSMCComparison with DSMC
DSMC used in testing the numerical 
schemes for stochastic Navier-Stokes

Spatial 
correlation

Time 
correlationcorrelation 

of density
correlation 
of density



Stochastic vs Deterministic PDEs?Stochastic vs. Deterministic PDEs?

Question:Question:
Is it necessary to 
use stochasticuse stochastic 
PDEs in the 
continuum region 
given that the 
particle region 
has fluctuations?has fluctuations?

Answer: YES!Answer: YES!



Simple Brownian MotionSimple Brownian Motion

Fi t t t i th

http://cims.nyu.edu/~donev/FluctHydro/Hybrid.2D.sphere.diffusion.mov

First test is the 
calculation of the 
Brownian motionBrownian motion 
of a spherical 
particle.p

Measure velocity 
auto-correlation 
function.



AR with Stochastic PDEs
Excellent agreement between a hybrid using stochastic PDE 
solver and an (expensive) pure particle calculation.

A. Donev, J.B. Bell, ALG, and B. Alder, SIAM Multiscale Mod. Sim. 8 871-911 (2010).



AR with Deterministic PDEsAR with Deterministic PDEs
A hybrid using a deterministic PDE solver significantly 
under-predicts the velocity auto-correlation functionunder-predicts the velocity auto-correlation function.



Adiabatic PistonAdiabatic Piston
Cold, dense gas Hot, dilute gasPiston

Particle region PDE regionPDE region
Initially the gas pressure is equal on both sides of the piston.



Sample Run of Adiabatic PistonSample Run of Adiabatic Piston

Cold, dense gas Hot, dilute gasPiston g

http://cims.nyu.edu/~donev/FluctHydro/Piston.2D.m=100.rigid.hybrid.mov

 = 4/3 eq
T ¾ T

 = ¾  eq
T 4/ TT = ¾ Teq T = 4/3 Teq

Note: Adiabatic Piston is a simple Brownian heat engine



Time Relaxation of the PistonTime Relaxation of the Piston

Hybrid using deterministic PDEs under-y g
predicts the time relaxation of the piston.

Hybrid using stochastic PDEs in excellentHybrid using stochastic PDEs in excellent 
agreement with pure particle calculations.

A. Donev, J.B. Bell, ALG, and B. Alder, SIAM Multiscale Mod. Sim. 8 871-911 (2010).



Relaxation from Mechanical 
Non-Equilibrium



DSMC Variants for Dense GasesDSMC Variants for Dense Gases

DSMC variants have been developed for dense gasesDSMC variants have been developed for dense gases
of hard spheres,
* Consistent Boltzmann Algorithm (CBA) Consistent Boltzmann Algorithm (CBA) 
* Enskog-DSMC 

and for general potentialsand for general potentials, 
* Consistent Universal Boltzmann Algorithm (CUBA)

Basic idea is to modify the collision process so that 
the collisional transport produces the desired non-ideal 

i fequation of state.



Consistent Boltzmann Algorithm (CBA)Consistent Boltzmann Algorithm (CBA)

In CBA, a particle’s position as well as its velocity p p y
changes upon collision.

The displacement ofThe displacement of 
position has magnitude 
equal to the diameter.

Direction is along the apse line (line between 
their centers) for a hard sphere collision with

After
Before After

their centers) for a hard sphere collision with 
the same change in the relative velocity. 

Very easy to implement in DSMC (really!)
Before

F. Alexander, A. Garcia and B. Alder, Physical Review Letters 74 5212 (1995)

Very easy to implement in DSMC (really!).



Consistent Universal Boltzmann 
Algorithm (CUBA)

Making CBA displacement a
Vapor condensation into droplet

Density contours at t =2,100,300,5000Making CBA displacement a 
function of density and 
temperature allows you to 

Density contours at t 2,100,300,5000

choose the equation of state.

Using van der Waals EOS weUsing van der Waals EOS we 
can even form condensation 
into a liquid with DSMC.

Not computationally efficient 
versus Molecular Dynamics.

F. Alexander, A. Garcia and B. Alder, Physica A 240 196 (1997).
", N. Hadjiconstantinou, A. Garcia, and B. Alder, Physica A 281 337-47 (2000). 



Stochastic Hard-Sphere DynamicsStochastic Hard Sphere Dynamics
vijvn

vi

vj

ddS

When two particles, i and j, are less than a diameter apart (|rij| < d) 
h i b bili (3 /d) f h llid hthere is a probability rate (3χ/d) vn for them to collide, where vn = 

–vij
. rij/|rij|; particles only collide if they are approaching (i.e., if 

vn > 0). Accepted collisions are evaluated deterministically as if the 

A. Donev, B.J. Alder, and  ALG, Physical Review Letters 101, 075902 (2008).

n ) p y
particles had a hard-sphere diameter of ds = |rij|.



Properties of SHSDProperties of SHSD
Stochastic Hard Sphere Dynamics (SHSD) is 
equivalent to a fluid with a linear core pair potential.

Pair Correlation
Fluctuations of 
density are 
consistent with

Pair Correlation 
Function ( = 1)

consistent with 
the equation of 
state (i.e., 
compressibility)

A. Donev, B.J. Alder, and  ALG, J. Statistical Mechanics P11008 (2009).



References and Spam

Reprints, pre-prints and 
slides available:

www.algarcia.org

DSMC tutorial & 
programs in my Japaneseprograms in my 
textbook.

Japanese



RGD 2012 in Zaragoza SpainRGD 2012 in Zaragoza, Spain
Summer 2012

Hosted b ZCAM the Spanish node of the E ropean Centers forHosted by ZCAM, the Spanish node of the European Centers for 
Atomic and Molecular Calculations (CECAM)



DSMC 2011 WorkshopDSMC 2011 Workshop
Late September 2011
Santa Fe, New Mexico
Hosted by Sandia Nat. Lab.



Von Neumann Symposium onVon Neumann Symposium on 
Multi-scale Algorithms

July 4-8, 2011
Snowmass UtahSnowmass, Utah

Sponsored bySponsored by 
American 
MathematicalMathematical 
Society


