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Outline

� Why use stochastic particle methods?

� Direct simulation Monte Carlo (DSMC)

� Selected DSMC applications

� Particle/continuum hybrids

� Dense gases and liquids (CBA & CUBA)

� Future directions
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Continuum vs. Particle

When is the continuum description of a gas

not accurate?
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High Kn scenarios

� Aerospace 
ows

� Micromechanical devices

� Fluctuations (e.g., light scattering)

� Shock waves and interfaces
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Direct Simulation Monte Carlo

DSMC is a particle-based algorithm for simu-

lating a dilute gas. Particle collisions are eval-

uated as a stochastic process.

History
� DSMC developed by G.A. Bird (late 60's)

� Popular in aerospace engineering (70's)

� Variants & improvements (early 80's)

� Applications in physics & chemistry (late 80's)

� Used for microscopic 
ows (early 90's)

� Extended to dense gases & liquids (mid 90's)
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DSMC Algorithm

� Initialize system with particles

� Loop over desired number of time steps

- Create particles at open boundaries

- Move all the particles

- Process particle/boundary interactions

- Select and execute random collisions
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DSMC Collisions

� Sort particles into spatial collision cells

� Loop over collision cells

- Compute collision frequency in a cell

- Select random collision partners within cell

- Process each collision
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Collisions (cont.)

Probability that a pair collides only depends on

their relative velocity.

Post-collision velocities (6 variables) given by:

� Conservation of momentum (3 constraints)

� Conservation of energy (1 constraints)

� Random collision solid angle (2 choices)

v1 v2

vc

vr

8



Application: Microchannel Flows
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Application: Fluctuations
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Continuum/DSMC Hybrids

Problem:
DSMC is computationally expensive

Solution:
Only use DSMC where it is needed

Similar to the idea of mesh re�nement
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Ordinary Mesh Re�nement

Solve equations of the form @tA = �r � F(A)

using an explicit PDE solver (e.g., Godunov).

Coarse/Fine Grid Coupling

� Advance coarse grid

� Fill �ne/coarse boundary data

- Advance �ne grid

- Record 
uxes at coarse/�ne interface

- Repeat �ne grid calculation

� \Re
ux" boundary coarse cells

� Back�ll overlying coarse cells
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Mesh Re�nement Illustration
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Mesh and Algorithm Re�nement

Coarse/DSMC Coupling

� Advance coarse grid

� Fill DSMC boundary data

- Create particles in bu�er cells

- Move all particles

- Record particles crossing interface

- Discard particles left in bu�er region

- Collide particles within DSMC region

- Repeat DSMC calculation

� \Re
ux" boundary coarse cells

� Back�ll overlying coarse cells
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MAR Illustration
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Rayleigh Problem

DSMC Navier-Stokes
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Rayleigh Problem (cont.)
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Flow past a Cylinder
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Particles near Cylinder

Sample of particles (1 in 75)
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Particles near Cylinder (cont.)

Particles that struck cylinder (1 in 75)
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Dense Gas Variants

DSMC collisions are statistically equivalent to

\point" collisions because particle positions are

irrelevant in a collision

Problem:
DSMC gives ideal gas EOS

Solution:
Modify collisions to give non-zero virial
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Consistent Boltzmann Algorithm

Hard sphere displacement
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Displacement is parallel to line connecting cen-

ters at impact, as determined from pre- and

post-collision velocities.

CBA gives exact hard sphere equation of state
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CBA Results
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Consistent Universal Boltzmann Algorithm

Magnitude of the displacement varies with den-

sity and temperature, according to the desired

equation of state.
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Van der Waals CUBA

Fixed T < Tc
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Future Directions

� MAR hybrids using MD, LG or LB

� Particle hybrids (e.g., MD & CBA)

� Statistical mechanics of CUBA models

� Applications (e.g., micromachines)
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