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e Future directions



Continuum vs. Particle

When is the continuum description of a gas
not accurate?
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High Kn scenarios
e Aerospace flows
e Micromechanical devices
e Fluctuations (e.qg., light scattering)

e Shock waves and interfaces



Direct Simulation Monte Carlo

DSMC is a particle-based algorithm for simu-
lating a dilute gas. Particle collisions are eval-
uated as a stochastic process.

History

e DSMC developed by G.A. Bird (late 60's)

e Popular in aerospace engineering (70's)

e Variants & improvements (early 80's)

e Applications in physics & chemistry (late 80's)
e Used for microscopic flows (early 90's)

e Extended to dense gases & liquids (mid 90's)



DSMC Algorithm

e Initialize system with particles

e Loop over desired number of time steps
- Create particles at open boundaries
- Move all the particles
- Process particle/boundary interactions
- Select and execute random collisions



DSMC Collisions

e Sort particles into spatial collision cells

e Loop over collision cells
- Compute collision frequency in a cell
- Select random collision partners within cell
- Process each collision




Collisions (cont.)

Probability that a pair collides only depends on
their relative velocity.

Post-collision velocities (6 variables) given by:
e Conservation of momentum (3 constraints)
e Conservation of energy (1 constraints)

e Random collision solid angle (2 choices)




Application: Microchannel Flows
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Application: Fluctuations
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Continuum/DSMC Hybrids

Problem:
DSMC is computationally expensive

Solution:
Only use DSMC where it is needed

Similar to the idea of mesh refinement
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Ordinary Mesh Refinement

Solve equations of the form 0;A = —V - F(A)
using an explicit PDE solver (e.g., Godunov).

Coarse/Fine Grid Coupling

e Advance coarse grid

e Fill fine/coarse boundary data
- Advance fine grid
- Record fluxes at coarse/fine interface
- Repeat fine grid calculation

e "“Reflux” boundary coarse cells

e Backfill overlying coarse cells
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Mesh Refinement Illustration
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Mesh and Algorithm Refinement

Coarse/DSMC Coupling

e Advance coarse grid

e Fill DSMC boundary data
- Create particles in buffer cells

Move all particles

Record particles crossing interface

Discard particles left in buffer region
- Collide particles within DSMC region
- Repeat DSMC calculation

e "“Reflux” boundary coarse cells

e Backfill overlying coarse cells
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MAR Illustration
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Rayleigh Problem

Y-momentum Density
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Flow past a Cylinder
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Particles near Cylinder

Sample of particles (1 in 75)
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Particles near Cylinder (cont.)

Particles that struck cylinder (1 in 75)
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Dense Gas Variants

DSMC collisions are statistically equivalent to
“point” collisions because particle positions are
irrelevant in a collision

Problem:
DSMC gives ideal gas EOS

Solution:
Modify collisions to give non-zero virial
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Consistent Boltzmann Algorithm

Hard sphere displacement
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Displacement is parallel to line connecting cen-
ters at impact, as determined from pre- and
post-collision velocities.

CBA gives exact hard sphere equation of state
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CBA Results
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Consistent Universal Boltzmann Algorithm

Magnitude of the displacement varies with den-
Sity and temperature, according to the desired
equation of state.
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Van der Waals CUBA
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Future Directions

MAR hybrids using MD, LG or LB

Particle hybrids (e.g., MD & CBA)

Statistical mechanics of CUBA models

Applications (e.g., micromachines)
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