%% dftcs - Program to solve the diffusion equation % using the Forward Time Centered Space (FTCS) scheme. clear; help dftcs; % Clear memory and print header %% * Initialize parameters (time step, grid spacing, etc.). tau = input('Enter time step: '); N = input('Enter the number of grid points: '); L = 1.; % The system extends from x=-L/2 to x=L/2 h = L/(N-1); % Grid size kappa = 1.; % Diffusion coefficient coeff = kappa*tau/h^2; if( coeff < 0.5 ) disp('Solution is expected to be stable'); else disp('WARNING: Solution is expected to be unstable'); end %% * Set initial and boundary conditions. tt = zeros(N,1); % Initialize temperature to zero at all points tt(round(N/2)) = 1/h; % Initial cond. is delta function in center %- The boundary conditions are tt(1) = tt(N) = 0 %% * Set up loop and plot variables. xplot = (0:N-1)*h - L/2; % Record the x scale for plots iplot = 1; % Counter used to count plots nstep = 300; % Maximum number of iterations nplots = 50; % Number of snapshots (plots) to take plot_step = nstep/nplots; % Number of time steps between plots %% * Loop over the desired number of time steps. for istep=1:nstep %% MAIN LOOP %% %* Compute new temperature using FTCS scheme. tt(2:(N-1)) = tt(2:(N-1)) + ... coeff*(tt(3:N) + tt(1:(N-2)) - 2*tt(2:(N-1))); %* Periodically record temperature for plotting. if( rem(istep,plot_step) < 1 ) % Every plot_step steps ttplot(:,iplot) = tt(:); % record tt(i) for plotting tplot(iplot) = istep*tau; % Record time for plots iplot = iplot+1; end end %% * Plot temperature versus x and t as wire-mesh and contour plots. figure(1); clf; mesh(tplot,xplot,ttplot); % Wire-mesh surface plot xlabel('Time'); ylabel('x'); zlabel('T(x,t)'); title('Diffusion of a delta spike'); pause(1); figure(2); clf; contourLevels = 0:0.5:10; contourLabels = 0:5; cs = contour(tplot,xplot,ttplot,contourLevels); % Contour plot clabel(cs,contourLabels); % Add labels to selected contour levels xlabel('Time'); ylabel('x'); title('Temperature contour plot');